项目名称: 高灵敏度宽谱响应石墨烯光电探测器研究

项目编号: No.51302081

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 张永哲

作者单位: 北京工业大学

项目金额: 25万元

中文摘要: 二维碳族晶体石墨烯具有高达200,000cm2V-1s-1的载流子迁移率以及从可见光到中红外的超宽光谱吸收,使得石墨烯在宽光谱超快光电探测方面具有广阔的发展前景。然而,石墨烯极低的光吸收度(2.3%)和超快的载流子-声子散射时间导致其光电响应度很低(仅为0.01A/W左右)。这严重阻碍了石墨烯在光电领域的应用。本项目拟通过在石墨烯中引入能够捕获光生电子的缺陷态陷阱,从而延长光生电子-空穴的复合时间,进而提高石墨烯的光电响应度。前期的实验结果表明,经过金属Ti处理后,石墨烯上形成了高密度的缺陷态和电子带隙。且其光电响应度明显提高。此方法简便可行,成本低,适合于大面积制备。本项目将在前期实验的基础上进一步研究金属处理参数与石墨烯缺陷态及带隙大小的关系,最终实现可控制备。此外,还将探索缺陷类型,缺陷态密度及带隙大小对探测器性能影响的机理,为设计高性能石墨烯光电探测器提供理论指导和工艺支持。

中文关键词: 石墨烯;光电探测器;高灵敏度;宽谱响应;

英文摘要: Graphene, a two dimensional carbon based crystal, owns the highest carrier mobility of 200,000cm2V-1s-1 and the wide light absorption from the visible to mid-infrared. These advantages make graphene become an excellent candidate in high speed light detection in a wide spectum range. However, the quick carrier-phonon scaterring rate which leads to the rapid recombination of photo-generated electron-hole pairs and low absorption (about 2.3%) cause the responsivity of graphene photodetector as low as 0.01A/W. The low responsivity blocks the graphene application in optoelectronic field. The presented proposal aims to improve the performance of graphene photodetector by introducing electron trapping centers. The electron trapping center could trap the photo-generated electrons and then let the photo-generated holes transit in the circuit many times. Then the responsivity of graphene photodetector could increase. Our initial experiment results show that high density defects and bandgap form after a Titanium (Ti) sacrificial layer fabrication process. And the responsivity of graphene photodetector are extraordinarily enhanced in wide range from visible to mid-infrared. The imrpovement could result from the introduction of defect related electron trapping centers and bangap in graphene. Compared to other approaches to e

英文关键词: Graphene;Photodetector;High responsivity;Wide range;

成为VIP会员查看完整内容
0

相关内容

《信息安全技术边缘计算安全技术要求》国家标准意见稿
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
12+阅读 · 2019年4月9日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《信息安全技术边缘计算安全技术要求》国家标准意见稿
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员