项目名称: MR阻尼器动态特性的物理机制、能量转化及设计理论

项目编号: No.51308450

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 建筑科学

项目作者: 郭鹏飞

作者单位: 西安建筑科技大学

项目金额: 25万元

中文摘要: 深刻理解MR阻尼器的动态特性是真正掌握MR减振技术的基础。现有研究通过拟合试验数据识别模型参数建立的参数化或非参数模型,虽在理论和实测上均获得了很好的控制效果,但其本质上是基于现象机制的唯象模型。目前,MR阻尼器动态特性的物理机制仍不清晰、内部能量转换缺乏定律研究、动态特性的设计理论仍未建立。本项目基于物理模型采用逐步深入的方式解决这三个基本问题。建立力-磁-热耦合的物理模型,以对任意电流和位移激励下的瞬态阻尼力、内部能量变化、温度分布进行准确的定量分析;揭示阻尼力-速度滞回形成的物理机制和温度影响阻尼力的物理机制;揭示结构参数和激励方式对温度分布、动态阻尼力、内部能量转换的影响规律和主要影响因素;推导正弦位移激励下速度-阻尼力滞回的设计公式;推导阶跃激励下阻尼器响应时间的计算公式;推导周期激励下阻尼力频率的计算公式;建立基于能量准则的MR阻尼器的设计和优化方法。

中文关键词: 磁流变阻尼器;动态性能;物理模型;磁路;流体动力学有限元模型

英文摘要: In-depth understanding of the dynamic behavior of MR dampers is the key to applying the MR technology to the semi-active controls of structural vibration. The parametric or non-parametric models in existing studies, whose parameters are determined by fitting experimental data, are essentially belong to phenomenological models, although they show great accuracy in predicting the dynamic damping force, thus leading to outstanding vibration control effects. So far, the physical mechanism behind the dynamic behavior of MR dampers is still unknown, the energy conversion during the working process is studied in quality and the design method remains to be developed. This research proposal aims to solve these three problems in a gradual way based on the physical models of MR dampers. The mechanics- magnetics-heat coupling model will be developed to accurately calculate dynamic force, temperature, and energies of all kinds for dampers under arbitrary input electric currents and piston displacements. The physical mechanisms of both the generation of the force-velocity hysteresis and the effects of temperature on the damping force will be revealed. The rule and the dominant factor will be investigated for the impacts of structure parameters and way of the excitations on temperature distribution, dynamic damping forces and

英文关键词: Magnetorheological fluid damper;dynamic performance;physical model;magnetic circuit;high-dimensional finite element CFD model

成为VIP会员查看完整内容
0

相关内容

深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
24+阅读 · 2021年10月22日
专知会员服务
36+阅读 · 2021年7月5日
专知会员服务
42+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
38+阅读 · 2021年2月8日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
专知会员服务
79+阅读 · 2020年12月18日
过度设计会扼杀你的产品
InfoQ
0+阅读 · 2022年3月5日
一文读懂 Pytorch 中的 Tensor View 机制
极市平台
0+阅读 · 2022年1月30日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
用沐神的方法阅读PyTorch FX论文
极市平台
0+阅读 · 2021年12月27日
综述:PyTorch显存机制分析
极市平台
0+阅读 · 2021年11月5日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
【数字孪生】使用数字孪生体进行预测性维护
产业智能官
27+阅读 · 2019年7月22日
平台积分体系设计方案
PMCAFF
31+阅读 · 2018年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
24+阅读 · 2021年10月22日
专知会员服务
36+阅读 · 2021年7月5日
专知会员服务
42+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
38+阅读 · 2021年2月8日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
专知会员服务
79+阅读 · 2020年12月18日
相关资讯
过度设计会扼杀你的产品
InfoQ
0+阅读 · 2022年3月5日
一文读懂 Pytorch 中的 Tensor View 机制
极市平台
0+阅读 · 2022年1月30日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
用沐神的方法阅读PyTorch FX论文
极市平台
0+阅读 · 2021年12月27日
综述:PyTorch显存机制分析
极市平台
0+阅读 · 2021年11月5日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
【数字孪生】使用数字孪生体进行预测性维护
产业智能官
27+阅读 · 2019年7月22日
平台积分体系设计方案
PMCAFF
31+阅读 · 2018年11月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员