项目名称: 基于肖特基效应和表面等离子体共振协同增强TiO2/MxOy复合纳米纤维光催化产氢的研究

项目编号: No.51502269

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 张鹏

作者单位: 郑州大学

项目金额: 21万元

中文摘要: 能源短缺和环境污染是当前人类面临的重大挑战。半导体光催化技术能够利用太阳能光解水获得清洁能源氢能,从而实现绿色能源的转换。然而,太阳光利用率低、量子效率低、较高的过电势(相对H2)以及液相应用中难于分离回收等缺点是困扰传统粉体光催化剂产业化进程的瓶颈问题。为此,本课题基于贵金属表面等离子体共振和贵金属/半导体的肖特基效应协同作用,同时借助电纺纳米材料的大长径比、高比表面积和独特的纤维网毡结构,拟构筑贵金属纳米粒子修饰的TiO2/MxOy复合纳米纤维材料,通过对不同带宽半导体氧化物MxOy的系统研究,获得具有太阳光利用率高、量子效率高、产H2性能优异以及回收再利用特性良好的环境友好型高效一维纳米纤维光催化材料。同时,结合辅助性实验、验证性实验以及理论模拟实验结果,探索协同增强光催化机理,为光催化材料及相关技术在未来环境治理以及清洁能源领域的应用提供新思路。

中文关键词: 纳米纤维;静电纺丝;贵金属;半导体;光催化

英文摘要: Energy crisis and environmental pollution have become increasingly serious issues for human beings to confront in modern society. In order to get green energy, water can be split into hydrogen by semiconductor-based photocatalysts. However, there still existed several major issues limiting to the industrialization process: low sunlight utilization rate, low quantum efficiency, high over potential (relative to H2) and the problem of separate and recycle. In order to solve the problems, it is highly challenging but desirable to design an artificial multi-component photosynthetic system based on surface plasmon resonance of noble metals and noble metals/semiconductor Schottky effect in which TiO2/MxOy composite nanofibers were modified by noble metal nanoparticles, and the bandgap of MxOy were controlled by choosing different metal oxides. Besides, the large aspect ratio, high specific surface area and unique web mat structure of electrospun nano-materials make it easily separated and recycled. Finally, the photocatalytic mechanism would be further studied by combining the results of verification experiments and theoretical simulation experiments.

英文关键词: Nanofibers;Electrospinning;Noble metals;Semiconductor;Photocatalysis

成为VIP会员查看完整内容
0

相关内容

中国信通院《5G应用创新发展白皮书》
专知会员服务
32+阅读 · 2022年3月9日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年2月12日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Simple and Effective Unsupervised Speech Synthesis
Arxiv
2+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
中国信通院《5G应用创新发展白皮书》
专知会员服务
32+阅读 · 2022年3月9日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年2月12日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员