项目名称: 透明柔性铜纳米线弯曲疲劳寿命及传导性质的研究

项目编号: No.51301020

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 张文雪

作者单位: 长安大学

项目金额: 25万元

中文摘要: 铜纳米线取代ITO用于柔性显示器和太阳能电池时,其弯曲寿命和传导性质是经常涉及且受关注的基础科学问题。本项目基于构型改变铜纳米线弯曲应力、传导行为的模拟事实以及弯曲应力-传导-结构演变三位一体的构架关系,提出利用结构和尺寸调控其弯曲寿命的学术思想,调控成本和性能。通过模拟获取材料结构、原子、电子的分布状况,获得铜纳米线结构、耐弯曲性质和传导之间的关系,阐明构型对材料结构失效、传导性质下降及耐弯曲性能的影响规律,为实现传导和耐弯曲性能调控提供理论依据。并利用PI95透射电镜联用力学性能测试仪对单根纳米线进行原位弯曲实验,在弯曲应力作用的同时得到电导率。综合利用透射电镜联用力学设备(PI95)和第一原理计算,进行实验-模拟循环优化,从原子和电子量级对传导性质的物理本质进行探讨,获取柔性铜纳米线材料的电子结构和传导性能等信息。研究成果将为其在未来柔性太阳能、显示器的应用提供良好的理论基础。

中文关键词: 柔性材料;尺寸效应;弯曲;传导性质;铜纳米线

英文摘要: In micro-nano scale, repeated bending working condition, flexible Cu nanowires has emerged a lot of failure forms, leading to its conductivity attenuation. The bending life and conduction properties of the copper nanowires are usually met with in the course of replacing ITO for flexible displays and solar cells, and thus are widely concerned and regarded as a basic sicientific issue. In the light of the simulation fact of the changes in bending stress and quantum conduction of Cu nanowires by different configurations, as well as triune relationship of bending stress - conduction - the structural evolution, we proposed in this project an academic thought of the bending properties regulation by size and configurations to reduce the cost and improve the properties. We could receive the structure, atom and the electron distribution of copper nanowires by First-priniciple simulation. The effect of bending stress on atom structure, electrical structure and conduction properties is investigated, and then the structure and size parameters of the copper nanowires can be optimized. The mechanism of bending failure and conductivity attenuation is revealed and the key factor can be found out. The conduction properties as bending processing could be received in situ bending experiments on single nanowire by PI95 transmissi

英文关键词: Flexible materials;Size-dependent;Bending;Conduction properties;Cu nanowire

成为VIP会员查看完整内容
0

相关内容

《智能制造机器视觉在线检测测试方法》国家标准意见稿
逆优化: 理论与应用
专知会员服务
37+阅读 · 2021年9月13日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月21日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
47+阅读 · 2020年12月20日
请不要吸开源的血
夕小瑶的卖萌屋
0+阅读 · 2022年3月19日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关VIP内容
《智能制造机器视觉在线检测测试方法》国家标准意见稿
逆优化: 理论与应用
专知会员服务
37+阅读 · 2021年9月13日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月21日
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
47+阅读 · 2020年12月20日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员