项目名称: 基于声子晶体带隙特征的电动车悬置总成多频带减振方法研究

项目编号: No.51305303

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 吴旭东

作者单位: 同济大学

项目金额: 25万元

中文摘要: 电动汽车由于其环保高效节能的特性、空间布置的灵活性与对传统汽车平台的适应性成为新能源汽车中具有代表性和竞争力的方案。其动力系统的振动新问题在电动汽车产业化过程成为制约电动汽车平顺性和舒适性的关键问题。由于电动汽车动力总成振动源特性和总布置的变化,使得以悬置总成及副车架为主要振动路径的多频带范围的结构振动问题成为电驱动动力总成减振研究的难点。 声子晶体结构因其可设计的宽频带带隙特性和结构适用性成为此类结构减振中颇具前景的研究热点。将声子晶体结构应用到电驱动动力系统的悬置总成和副车架中是本项目研究的一个重要创新方面。通过拓展中低频弹性波带隙的机理、算法研究和结构应用设计研究,为结构减振应用提供重要的理论方法和支持。因此开展本项目的研究具有重要的理论意义和创新性。

中文关键词: 声子晶体;局域共振;带隙调控;电动车;动力总成副车架

英文摘要: Electric Vehicle has become a competitive and popular solution in the trend of developing new energy vehicle due to its high efficiency, zero contamination and compatibility to stock platform. Nowadays the vibration issue in the electric powertrain becomes the main restriction to the EV's drivability. In consideration of the different vibration characteristics and layout condition of EV powertrain, the multi-band vibration issue on the main transfer path consisted of mounting structures and sub-frame becomes the difficulty in the vibration control of EV powertrain. Due to its devisable wide stop-band and flexible structural application, phonic crystal structure is a recent hot and prospective field in the research of structural vibration control. It is an important innovation of this project to apply the phonic crystal structure to the mounting structure and sub-frame. The development of the band gap mechanisms theory and property calculation provides theoretical support and tools for structural vibration control, which brings academic significance and appliance value.

英文关键词: Phonoic crystal;Local resonance;Bandgap manipulation;Electric vehicle;Powertrain subframe

成为VIP会员查看完整内容
0

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2021年5月12日
领域自适应研究综述
专知会员服务
54+阅读 · 2021年5月5日
专知会员服务
21+阅读 · 2021年4月20日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
专知会员服务
160+阅读 · 2020年4月21日
又一自动驾驶创企拿下大额融资!
AI前线
0+阅读 · 2022年4月12日
造车梦几度破灭,美的为何死磕“造车”?
创业邦杂志
0+阅读 · 2022年2月17日
才一年,智能车就不再是新势力专利!
量子位
0+阅读 · 2022年1月28日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
「海风」扑面,化解凛冬之中的能源危机
机器之心
0+阅读 · 2021年11月29日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关主题
相关VIP内容
清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2021年5月12日
领域自适应研究综述
专知会员服务
54+阅读 · 2021年5月5日
专知会员服务
21+阅读 · 2021年4月20日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
专知会员服务
160+阅读 · 2020年4月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2018年1月12日
微信扫码咨询专知VIP会员