项目名称: 中空碳纳米洋葱宏量可控制备及其超电容储能机制研究

项目编号: No.51272173

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 赵乃勤

作者单位: 天津大学

项目金额: 80万元

中文摘要: 超级电容器具有充电速度快,使用寿命长等优点,是新型储能元器件的发展方向,但其能量密度与先进锂离子电池相比还有较大差距,而制约其发展的关键之一是电极材料。碳纳米材料的独特结构及固有特性可望成为超电容的理想电极材料。本研究以制备具有中空碳纳米洋葱结构的超电容电极材料为目标,采用化学气相沉积法获得碳包覆Fe-Ni合金纳米颗粒,以此为固体碳源模板,通过高温退火原位催化生成宏量的、结构和尺寸可控的碳纳米洋葱,系统研究可控生长条件和影响因素;结合第一性原理模拟,研究碳和催化剂的相互作用,探明合金催化生成中空碳纳米洋葱的机理;通过分散及纯化处理对碳纳米洋葱进行功能调控,探讨影响其电容性能的关键因素,分析电解液离子在该电极体系中的吸附和扩散行为,建立电荷存储模型并阐明储能机理。该研究可望实现中空碳纳米洋葱的宏量可控制备和对其电容性能的有效调控,为获得高能量密度的超电容电极材料提供理论指导及技术途径。

中文关键词: 碳纳米洋葱;碳纳米链;可控;超电容;合金催化剂

英文摘要: The supercapacitor is the developing direction of the new type energy storage devices due to its advantages of high charge/discharge speed and long service life. However, one of the key restriction for the application of supercapacitor is the electrode material whose energy density is still much lower than that of advanced lithium ion battery. Carbon nanomaterial is expected to become an ideal electrode material for supercapacitor due to its unique structures and properties. The goal of this research project is to synthesize high-capacity electrode materials of supercapacitor with hollow carbon nano-onions (HCNOs). Carbon nano-onions with Fe-Ni nanoparticles encapsulated will be synthetized by chemical vapor deposition method, which is used as a template of solid carbon source and is annealed at high temperature. Then, HCNOs with massive production and controllable structure and size will be in-situ obtained.The growth conditions and mechanism for the controllable synthesis of the HCNOs will be comprehensively studied. In combination with the first-principles calculations, the microscopic interaction between carbon and catalysis will be studied for understanding the growth mechanism of HCNOs catalyzed by Fe-Ni alloy. The HCNOs will be functionally modulated by dispersion and purification processes. The key facto

英文关键词: carbon nano-onions;carbon nano-chains;controllable;supercapacitors;alloy catalyst

成为VIP会员查看完整内容
0

相关内容

工业人工智能驱动的流程工业智能制造
专知会员服务
96+阅读 · 2022年3月9日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
56+阅读 · 2022年2月3日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
20+阅读 · 2021年12月4日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
汽车大厂,「疯抢」产能
36氪
0+阅读 · 2022年2月15日
NIPS'21 | 通过动态图评分匹配预测分子构象
图与推荐
0+阅读 · 2021年11月29日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关主题
相关VIP内容
工业人工智能驱动的流程工业智能制造
专知会员服务
96+阅读 · 2022年3月9日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
56+阅读 · 2022年2月3日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
20+阅读 · 2021年12月4日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
微信扫码咨询专知VIP会员