项目名称: 面向移动社交网络的上下文数据辅助的社区结构研究

项目编号: No.61472024

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 计算机科学学科

项目作者: 童超

作者单位: 北京航空航天大学

项目金额: 81万元

中文摘要: 移动社交网络的社区结构研究具有重要的理论意义、研究价值和广阔的应用前景。本项目拟结合移动社交网络的上下文数据对社区结构发现和演化进行研究。具体包括:1)设计移动社交网络上下文数据的采集分析系统,对采集到的上下文数据建立语义表示和关联模型,生成具备时空特征的移动社交网络;2)提出保持社区结构的采样算法,对网络进行科学合理地采样,采样结果能够很好地维持社区结构;3)针对后续提出的社区发现算法需要知道社区数量等先验知识的问题,通过理论分析与证明提出基于Laplacian矩阵Jordan型的社区数量与社区骨干结构等先验知识发现方法;4)在上下文数据的语义表示、关联模型和先验知识的基础上,提出基于上下文数据的移动社交网络重叠社区发现算法,并利用拟提出的符合重叠社区特征的社区发现算法评价指标进行评价;5)结合宏观和微观角度进行分析、归纳社区演化规律,提出符合移动社交网络生长规律的社区演化模型。

中文关键词: 移动社交网络;社区结构;社区发现;移动计算;社会网络分析

英文摘要: The research on mobile social networks community structure has important theory significance, research value and broad application prospects. We will research the community detection and community evolution baed on the context data of mobile social networks. The research work includes: 1) We will design the mobile social networks context data collecting and analyzing system, establish the semantic representation and correlation model for these data, and get the abstract mobile social networks with spatiotemporal attribute; 2) We will propose some sampling algorithms which can keep the network community structure well, sample the network data scientifically and reasonably; 3) Some community detection algorithms need to know priori knowledge, for instance, the number of communities or the communities backbone structure, we plan to propose methods for finding such prior knowledge beaded on Laplacian matrices Jordan forms of the network through theoretical analysis and proof; 4) Based on the priori knowledge, semantic representations and correlation models for context data, we will propose some overlapping community detection algorithms based on context data, and give a serious of evaluation indexes to evaluate these algorithms; 5) For the evolution of community, we intend to study the evolution process in both microscopic and macroscopic manners, and present some models that can depict the evolution of community in real mobile social networks.

英文关键词: Mobile Social Networks;Community Struture;Communitity Detection;Mobile Computing;Social Networks Analysis

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
【CVPR2022】整合少样本学习的分类和分割
专知会员服务
26+阅读 · 2022年3月31日
【WWW2022】TaxoEnrich:通过结构语义表示的自监督分类法补全
面向语义搜索的自然语言处理
专知会员服务
59+阅读 · 2021年12月18日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
【WWW2021】基于双侧深度上下文调制的社会化推荐系统
专知会员服务
27+阅读 · 2021年1月28日
专知会员服务
45+阅读 · 2020年11月13日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
使用上下文信息优化CTR预估中的特征嵌入
机器学习与推荐算法
0+阅读 · 2021年8月20日
【WWW2021】面向时空图预测的神经结构搜索
网络舆情分析
计算机与网络安全
20+阅读 · 2018年10月18日
网络安全态势感知
计算机与网络安全
25+阅读 · 2018年10月14日
Twitter情感分析及其可视化
数据挖掘入门与实战
21+阅读 · 2018年3月20日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
15+阅读 · 2019年4月4日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
【CVPR2022】整合少样本学习的分类和分割
专知会员服务
26+阅读 · 2022年3月31日
【WWW2022】TaxoEnrich:通过结构语义表示的自监督分类法补全
面向语义搜索的自然语言处理
专知会员服务
59+阅读 · 2021年12月18日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
【WWW2021】基于双侧深度上下文调制的社会化推荐系统
专知会员服务
27+阅读 · 2021年1月28日
专知会员服务
45+阅读 · 2020年11月13日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
相关资讯
使用上下文信息优化CTR预估中的特征嵌入
机器学习与推荐算法
0+阅读 · 2021年8月20日
【WWW2021】面向时空图预测的神经结构搜索
网络舆情分析
计算机与网络安全
20+阅读 · 2018年10月18日
网络安全态势感知
计算机与网络安全
25+阅读 · 2018年10月14日
Twitter情感分析及其可视化
数据挖掘入门与实战
21+阅读 · 2018年3月20日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员