项目名称: 基于4D-PCMR的主动脉夹层流固耦合分析
项目编号: No.81470573
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 医药、卫生
项目作者: 符伟国
作者单位: 复旦大学
项目金额: 73万元
中文摘要: 主动脉夹层治疗前后可出现破裂、内脏动脉缺血等高致死率并发症,其原因与血流对动脉壁的相互有关。血液的主动脉相互作用的研究可用于对主动脉夹层扩张趋势及破裂风险的评估,但是目前国内缺乏对主动脉夹层流固耦合的相关研究。在前期生物力学研究和支架研发基础上,本项目拟①通过压力导管、4D-PCMRI等临床数据测量,获得主动脉夹层主要出入口的压力和血流速度等信息;②通过离体实验、管壁力学分析,建立表征主动脉壁力学性质的本构方程;③利用有限元分析软件结合计算流体力学软件,对主动脉夹层的脉动血液和血管壁的流固耦合作用进行数值模拟;④得出夹层模型中各个部位,如破裂口、真假腔中的血流速度、压力、壁面切应力、血管张力、管壁位移等信息。本研究将探索主动脉夹层进展和破裂的血流和主动脉相互作用的生物力学机制,为主动脉夹层术前扩张趋势与破裂风险评估提供理论依据,为提高主动脉夹层治疗的安全性提供科学性的实验依据和研究思路。
中文关键词: 主动脉夹层;胸主动脉夹层;血流动力学;腔内修复;流固耦合
英文摘要: After the presentation of aortic dissection, several severe complications such as aortic rupture, visceral ischemia, retrograde type A dissection, and aneurysmal formation threaten the lives of the patient, compromising the therapeutic effect and long-term results. There is a general consensus that the significant causes of such consequences are related with hemodynamic interactions with aortic wall. The interactions often determine the progression of the disease: dilation and rupture. In order to assess such risks, we conducted our previous biomechanical and stent-graft developing research. The current study focuses on the following aspects: 1, the measurement of aortic hemodynamic data such as major entry pressure and velocity using 4D-PCMR and pressure catheter; 2, establishing the constitutive equation through the evaluation of aortic wall properties via ex vivo experiments; 3, computational simulation of the fluid structure interaction through finite element method and computational fluid dynamics software.4, the calculation of flow velocity, pressure, wall sheer stress, wall surface tension, and wall shift of the entry tear, ture lumen and false lumen. After these experiments, we hope to explore the biomechanical mechanism of aortic dissection progression and rupture, provide theoretical basis of preoperative and rupture risk evaluation, and improve the safety and validity of both medical and endovascular therapies.
英文关键词: aortic dissection;thoracic aortic dissection;hemodynamics;endovascular repair;fluid structure interaction