项目名称: 新型超薄高效低高宽比纳米半球太阳电池研究

项目编号: No.11304133

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 李亚丽

作者单位: 兰州大学

项目金额: 30万元

中文摘要: 硅纳米结构优异的光、电学性能及其在太阳电池中的潜在应用引起了人们的广泛关注。本项目拟将二代薄膜电池与三代纳米电池概念相结合,将低高宽比纳米半球结构置于超薄硅薄膜太阳电池表面,以制备高性能低成本太阳电池。大面积规则排列的具有不同半径、周期的纳米半球阵列置于硅薄膜表面后,能有效调制硅薄膜与空气之间的折射率,增强光散射并延长入射光光程,从而可有效降低对入射光的反射并增加光吸收,使研发厚度低于1微米的超薄晶化硅薄膜太阳电池成为可能。同时纳米结构所特有的光电传输分离效应可缩短少数载流子的传输距离、减少复合损失,即使使用低纯材料也可实现有效的光生载流子收集,提高薄膜太阳电池的光电转换效率并降低成本。本项目将为高效超薄纳米结构硅薄膜太阳电池的研究提供理论依据,从而有望在大幅降低硅薄膜太阳电池制造成本的同时提高其转换效率。此理论模型也将为其他材料超薄高效薄膜太阳电池的研究开发提供思路及理论依据。

中文关键词: 太阳电池;半导体纳米结构;光俘获;异质结;湿化学刻蚀

英文摘要: Silicon nanostructures have been attracting much attention due to their unique optical and electrical properties, and the huge potential in solar cell applications. In this project, we combine the 2nd generation thin-film solar cell fabrication technologies with the 3rd generation nano solar cell concepts. Low aspect ratio nano-hemisphere arrays are introduced to texture (ultra-)thin film-based solar cells for achieving high performance cost-effectively. Large-scale rationally designed periodic Si nano-hemisphere arrays of varying diameters are fabricated using plasma-based etching with self-assembled silica nanopaticle monolayers as mask on Si ultrathin film surface. These nanostructure arrays provide impedance matching between the underlying solid Si and air through a gradual reduction of the spatial effective refractive index to suppress light reflection. In the meanwhile, the nanostructure arrays will also enhance the scattering to the incident light, thus elongating the optical path length and boosting light absorption. Owing to excellent light confinement of the surface nanostructures, it is possible to develop the high performance ultrathin film solar cells with the thickness even less than 1 um. Moreover, decoupling between light absorption and carrier collection of nanostructures reduces the transport d

英文关键词: Solar cells;semiconductor nanostructures;light trapping;heterojunction;wet chemical etching

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
24+阅读 · 2021年5月23日
基于区块链的数据透明化:问题与挑战
专知会员服务
20+阅读 · 2021年3月4日
专知会员服务
51+阅读 · 2020年12月28日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
12+阅读 · 2021年11月1日
Arxiv
13+阅读 · 2021年3月3日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员