项目名称: 多元非晶合金玻璃形成能力与微观结构关联性的同步辐射研究

项目编号: No.U1332112

项目类型: 联合基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 杨亮

作者单位: 南京航空航天大学

项目金额: 72万元

中文摘要: 非晶合金是热点研究的新型材料,具有相对优异的物理、化学、机械性能。目前大尺寸非晶合金材料的开发缺乏系统、完整的理论指导,源于其尚未澄清的机制问题,特别是其复杂的无序态结构未得到清楚解析。利用同步辐射实验技术结合理论计算可大大推动其微观结构的解析工作。申请者计划系统地研究Zr基和Ni基等多元金属玻璃的微观结构,以了解多元金属玻璃中掺杂元素对于非晶形成能力的极大提升作用。同时研究制备条件、加工工艺引起的微观结构变化与非晶形成能力的关系。拟采用先进的同步辐射实验手段(如X光衍射、X光吸收实验等),结合各种理论计算与模拟(如蒙特卡罗、Voronoi、分子动力学、X光吸收近边计算等),从短程序(团簇内部原子连接、键合作用和原子堆积效率等)到中程序(团簇连接、堆垛等)尺度揭示其微观结构(特别是掺杂原子的近邻环境)对非晶形成能力的影响,指导多元合金体系中寻找和设计具有优良性能的大尺寸非晶合金材料

中文关键词: 同步辐射;非晶合金;微观结构;非晶形成能力;模拟

英文摘要: As a new class of materials, metallic glasses (MGs) have been attracting intense interest because they have outstanding physical, chemical and mechanical properties. However, the development and application of MGs are still challenges because the glass forming mechanism and their microstructures are not well understood. Fortunately, it has been realized that the approach of synchrotron radiation experiments coupled with simulations and calculations can address this issue much better than any other methods. In this project, we plan to study structural mechanism of the high glass-forming abilities (GFAs) in multicomponent MGs, as well as the dependence of GFA on the preparation conditions. The state-of-the-art synchrotron radiation-based techniques (X-ray diffraction, X-ray absorption fine structure and so on) combined with some simulational or calculational methods (the reverse Monte-carlo, Voronoi tessellation and so on) will be carried out to achieve this goal. We expect to reveal the microstructures of these selected MGs at both short-range order (the so-called clusters and the atomic connection, bonds, interaction and the atomic packing efficiency inside clusters) and medium-range order (the connections style and packing efficiency of clusters). The structural origin of the high glass forming-ability and uniq

英文关键词: synchrotron radiation;amorphous alloy;microstructure;glass-forming ability;modeling

成为VIP会员查看完整内容
0

相关内容

《面向制造业的数字化仿真分类》国家标准意见稿
专知会员服务
65+阅读 · 2022年4月13日
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
28+阅读 · 2021年2月26日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
专知会员服务
49+阅读 · 2020年8月27日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2021年10月11日
小贴士
相关VIP内容
《面向制造业的数字化仿真分类》国家标准意见稿
专知会员服务
65+阅读 · 2022年4月13日
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
28+阅读 · 2021年2月26日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
专知会员服务
49+阅读 · 2020年8月27日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员