项目名称: 一维贵金属纳米有序阵列的局域表面等离子共振模式的尺度效应

项目编号: No.10804112

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 生物科学

项目作者: 张俊喜

作者单位: 中国科学院合肥物质科学研究院

项目金额: 24万元

中文摘要: 一维贵金属纳米有序阵列因具有光学各向异性会展现出丰富的局域表面等离子共振(LSPR)特征。研究它的意义在于:一方面通过研究纵向振动LSPR的偶极和多极模式的尺度效应能够揭示表面等离子激元与纳米结构相互作用的微观机制;另一方面为它在近场光学、生物标记和分子探测等领域上的应用提供科学依据。本项目拟发展微机控制的三电极电沉积技术制备贵金属纳米棒和低纵横比的纳米线有序阵列,研究纵向振动LSPR模式与尺度的关系,探索纵横比对纵向振动模式的影响规律并揭示其物理机制,研究纵向振动中偶极和多极模式出现的尺度条件。主要创新点:1.贵金属LSPR从零维的横向振动拓展到以一维的纵向振动为主,通过研究纵向振动LSPR谱的精细结构以及模式与尺度的相关性极大地丰富了LSPR的科学内涵。2.通过调节纵横比能够实现对纵向振动LSPR偶极模式的峰位在可见到红外宽波段范围内的调制。

中文关键词: 一维贵金属纳米有序阵列;局域表面等离子共振;模式;尺度效应

英文摘要: One-dimensional noble metal ordered nanoarrays exhibit abundant characteristics of localized surface plasmon resonance (LSPR) due to their optical anisotropy. The significance of this program is the interaction micromechanism between the surface plasmon polaritons (SPPs) and the nanoarrays can be revealed by investigating the size effects from the dipole and multipole modes of the longitudinal LSPR, on the other hand, this investigation offers a scientific basis to apply the LSPR to the fields including near-field optics, biological labels,and molecule detection. In this program we will develop computer controled tree-electrod electrodeposition approch to prepare noble metal nanorod arrays and nanowire arrays with small aspect ratios, and investigate the relationship between the longitudinal LSPR mode and the size of the nanostructers, subsequently explore the aspect ratio dependence of the longitudinal mode and analyze its physical mechanism, finally perform the size qualification resulted from the dipole and multipole longitudinal modes. The innovation points consist of two aspects: Firstly, LSPR has been extended from zero-dimensional transversal-resonance to the mainly one-dimensional longitudinal-resonance, the exploration on the longitudinal LSPR fine structures as well as the relationship between the resonance modes and the size will enrich the scientific connotation of the LSPR; Secondly, the longitudinal LSPR peaks for the dipole mode can be modulated in the visible and infrared spectra region by varying the aspect ratio of the nanostructures.

英文关键词: One-dimensional noble metal ordered nanoarrays; localized surface plasmon resonance (LSPR); mode; size effect

成为VIP会员查看完整内容
0

相关内容

【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
59+阅读 · 2022年2月3日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
66+阅读 · 2021年7月4日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
43+阅读 · 2021年2月8日
【Cell 2020】神经网络中的持续学习
专知会员服务
61+阅读 · 2020年11月7日
3299 元起,荣耀 Magic4 系列正式发布!
ZEALER订阅号
0+阅读 · 2022年3月17日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关VIP内容
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
59+阅读 · 2022年2月3日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
66+阅读 · 2021年7月4日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
43+阅读 · 2021年2月8日
【Cell 2020】神经网络中的持续学习
专知会员服务
61+阅读 · 2020年11月7日
相关资讯
3299 元起,荣耀 Magic4 系列正式发布!
ZEALER订阅号
0+阅读 · 2022年3月17日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员