项目名称: 大腔体六面顶压机的超高压碳化钨顶砧新结构研究

项目编号: No.11204102

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 韩奇钢

作者单位: 吉林大学

项目金额: 28万元

中文摘要: 压力作为一个基本物理条件,可以改变物质的晶体结构、电子结构和原子间的相互作用,生成许多常规条件下无法得到的新物质与新现象,拓展人类认识和改造自然的能力。因此,高压技术在国际上受到高度重视,广泛应用于极端条件下的凝聚态物理研究领域。本项目将针对高压研究普遍使用的六面顶压机的一级腔体压力仅为6GPa的瓶颈问题,提出通过多级预紧钢环与顶砧的过盈配合,实现顶砧材质的自增强;通过将顶砧的砧面结构改为缩减的多级凸台结构,实现腔体压力增加的"复合式碳化钨顶砧"这一新结构方案。借助有限元热-结构耦合模块,开展顶砧新结构的参数优化,揭示大质量支撑原理及侧向支撑原理的影响机制;依靠高压实验进行理论模型修证,确立科学的高压顶砧设计方法,并构建基于新结构碳化钨顶砧的一级腔体压力大于10GPa的大腔体六面顶超高压实验平台。满足物质新结构与性质研究、新型功能材料的设计与合成研究对大腔体、超高压环境的迫切需求。

中文关键词: 超高压;六面顶压机;复合式顶砧;大腔体;有限元

英文摘要: Under ultra-high pressure, the crystal structure, electronic band structure, and atomic interaction energy can be changed easily. Lots of novel materials and phenomena can be synthesized and found respectively, which can not be studied in condition of atmospheric pressure. These research results can expand understanding of the real world and increase our ability to transform nature. Thus, high pressure technology has been used in the field of extreme conditions physics widely and given high priority in the international arena. In order to solve the choke point of maximal cell pressure in the cubic high pressure apparatus (only 6 GPa), we have developed a new structure of tungsten carbide (WC) ultra-high pressure anvil (hybrid-anvil). The WC anvil (used in hybrid-anvil) is held in compressive stress by multi-steel supporting rings, so as to impart residual stress initially to counteract very high pressures generated during in ultra-high pressure conditions. The anvil face of hybrid-anvil is giving a convex shape for reaching a high pressure above 10GPa. We performed finite element analysis on scale parameters of hybrid-anvil and understanding of the principle of massive support and lateral support. Further more, the scientific design method of high pressure anvil and the platform of cubic ultra-high pressure (abo

英文关键词: Ultra-high pressure;cubic high pressure apparatus;hybrid-anvil;large sample;finite element method

成为VIP会员查看完整内容
0

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
61+阅读 · 2022年2月9日
强化学习可解释性基础问题探索和方法综述
专知会员服务
85+阅读 · 2022年1月16日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
103+阅读 · 2021年4月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
可逆神经网络详细解析:让神经网络更加轻量化
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关主题
相关VIP内容
清华大学:从单体仿生到群体智能
专知会员服务
61+阅读 · 2022年2月9日
强化学习可解释性基础问题探索和方法综述
专知会员服务
85+阅读 · 2022年1月16日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
103+阅读 · 2021年4月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
相关资讯
可逆神经网络详细解析:让神经网络更加轻量化
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员