项目名称: 电磁复合等离子体气动激励控制激波的机理研究

项目编号: No.51276197

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 能源与动力工程

项目作者: 李军

作者单位: 中国人民解放军空军工程大学

项目金额: 80万元

中文摘要: 等离子体流动控制是一种新型的主动流动控制技术,具有响应迅速、作用频带宽和控制灵活等技术优势,可以显著提升飞行器、动力装置气动性能。目前,国际上已初步揭示了电弧放电等离子体气动激励控制激波的基本原理,但是还存在激励强度弱,对激励特性的变化规律及其与超声速附面层耦合作用的机制尚不清楚等问题。本项目在初步实验的基础上,进行电磁复合等离子体气动激励控制激波的机理研究,通过等离子体特性的发射光谱诊断,流场的高速纹影、NPLS和PIV等测试,得到电磁复合等离子体气动激励的转动与振动温度、电子温度与密度,温度场、压力场和密度场等关键参数随时间的变化规律,揭示电磁复合等离子体气动激励与超声速附面层耦合作用机制;结合多场耦合数值仿真和风洞实验,获得各激励参数对控制激波效果的影响规律,揭示提高激励强度和控制激波能力的物理机制。为未来的飞机超声速巡航减阻、高超声速飞行器激波控制等应用领域提供新的技术途径。

中文关键词: 等离子体;电磁复合;电弧放电;激波;超音速

英文摘要: The method of plasma flow control is a noval active flow control technique with several advantages such as strong actuation intensity, wide actuation band, free of moving parts and so on, which could significantly improve the characteristics of aircraft and aero-engine. At present, the basic mechanism of shockwave control with arc discharge has been preliminarily revealed internationally, but there are still some problems to study, such as low actuation intensity, the changing rules of actuation characteristic and its coupling of supersonic boundary layer. In this project, based on the experiment, the mechanism investigation of shockwave controlling with electromagnetic combined plasma actuation will be conducted, through time resolved emission spectrum diagnosis, high spped schlieren and nano-based planar laser scattering and particle image velocimetry tests for flow field, the changing rules of some key parameters such as rotational and vibrational temperature of molecule, electronic temperature, electron density, the temperature and pressure and density of the fluid during the electromagnetic combined plasma actuation will be acquired, also the correlation mechanism between electromagnetic combined plasma actuation and supersonic boundary layer will be revealed. With the multi-physics numerical simulation an

英文关键词: plasma;electromagnetic combined;arc discharge;shock wave;supersonic

成为VIP会员查看完整内容
0

相关内容

《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
94+阅读 · 2022年4月14日
清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
132+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
清华大学:从单体仿生到群体智能
专知
16+阅读 · 2022年2月9日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
16+阅读 · 2020年5月20日
小贴士
相关主题
相关VIP内容
《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
94+阅读 · 2022年4月14日
清华大学:从单体仿生到群体智能
专知会员服务
70+阅读 · 2022年2月9日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
132+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员