项目名称: 硅基慢光光子晶体波导的设计制备及其在四波混频上的应用

项目编号: No.11204386

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 李俊韬

作者单位: 中山大学

项目金额: 30万元

中文摘要: 慢光是近十年才发展起来的,用于下一代全光通信和量子信息处理的新兴研究课题。人们为此提出了许多实现慢光的手段,各种不同方法实现的慢光被用于不同的领域。其中使用硅基平板光子晶体波导实现的平带慢光可极大增强光与物质的相互作用,能进一步降低目前发展的基于硅纳米波导线及共振腔的硅基上的全光通信器件的尺寸和能耗,是下一代全光通信的重要发展方向。本项目拟设计并制备具有平带慢光特性的硅基平板光子晶体波导,从而实现高群折射率,低色散和低传播损耗的慢光,并使用100 mW量级的光能量和几百微米的波导演示-10dB的四波混频效应;同时通过设计和制备嵌入二氧化硅结构的波导提高器件的性能;最后将结合光学参量振荡过程和慢光,制备出新型的波导结构,将高效四波混频的输入光能降致至10mW。达到在缩小上百倍长度的基础上实现目前硅纳米波导线功能的目标,进一步提高慢光在实际光通信中的应用。

中文关键词: 光子晶体波导;慢光;微纳结构;光场调控;

英文摘要: Slow light, which can be used in the next generation all-optical and quantum-optical communications, has been developed rapidly in the past ten years. By using different methods, slow light can be achieved and applied in different areas. One of the attractive area is to use the flat band slow light in silicon photonic crystal slab waveguide to enhance the light-matter interaction in the silicon optics. Base on this method, the size and power of the devices can be significantly improved compare to the all-optical device fabricated by the silicon nanowire and cavity. In this proposal, we plan to design and fabricate the silicon slow light photnic crystals waveguides with high group index, low dispersion and low propagation loss, then demonstrate the efficient four-wave mixing (-10 dB conversion efficiency) with only 100's mW pump power and 100's micrometer length of sample. Meanwhile, the results will be improved by designing and fabricating the silica-embedded waveguide structure. At last, we will fabricate a novel slow light waveguide by combining the optical parametric oscillator and slow light waveguide, in order to lower the input power of the four-wave mixing process to 10's mW. This corresponds to two orders of magnitude improvement or better in device performance compared to the State-of-the-Art silicon na

英文关键词: photonic crystals waveguide;slow light;nanostructures;light filed control;

成为VIP会员查看完整内容
0

相关内容

深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
20+阅读 · 2021年3月9日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关VIP内容
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
20+阅读 · 2021年3月9日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员