项目名称: 光的拓扑绝缘体及其物理特性研究:在光子晶体表面控制光

项目编号: No.11274042

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 张向东

作者单位: 北京理工大学

项目金额: 95万元

中文摘要: 在电子拓扑绝缘体研究的启发下,最近我们通过严格的数值模拟证明经过适当设计Dirac谷型光表面态能够在三维光子晶体表面上观察到,表面波在Dirac谷附近传播拥有电子在三维拓扑绝缘体中传输相似的特性。这意味着与三维电子拓扑绝缘相对应的"光拓扑绝缘体"能够被设计出来。基于这样的研究基础,本申请主要是对波在"光拓扑绝缘体"中传播出现的新奇物理特性进行研究。研究表面波在光子晶体表面传导的负折射、自准直和超聚集现象;探讨表面波被磁性杂质散射的物理机理和出现反常光霍尔效应的可能性;研究表面波在光子晶体表面传导的慢光效应和提高的非线性反应;探讨在光子晶体表面构造单个光学功能元件和集成光回路的可能性。通过对表面波在光子晶体表面传播出现的新奇物理现象研究,为微光电子器件的研制和开发提供新的思路。

中文关键词: 光子晶体;表面态;拓扑绝缘体;;

英文摘要: Motivated by investigations on topological insulators for electrons, we have recently constructed a three-dimensional photonic crystal (PC) slab and found Dirac-cone photonic surface states by using an exact multiple-scattering method in conjunction with supercell calculations, which the transmission properties of electromagnetic waves near the Dirac point on the surface of the sample are similar to the case of electrons on the surfaces of topological insulators. This means that "three-dimensional optical topological insulators" can be designed. Based on such an investigation, in the present application we will study on some novel physical properties of waves transport in "optical topological insulators". The negative refraction, self-collimation and superfocusing of the surface wave will be investigated; The physical origin of the surface wave scattered by the magnetic impurity and the possibility of anomalous optical Hall effect will be discussed; The slow light effect and improved nonlinear response will be also analyzed; The single optical functional device and integrated optical circuit will be also designed. Based on these investigations, a new train of thought can be provided for the design of optical-electronic devices.

英文关键词: photonic crystal;surface state;topological insulators;;

成为VIP会员查看完整内容
0

相关内容

【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
65+阅读 · 2021年12月29日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
211+阅读 · 2021年8月2日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
41+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
64+阅读 · 2021年6月18日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员