项目名称: 利用高度有序的有机纳米结构阵列提高聚合物光伏器件效率及其机理研究

项目编号: No.61274063

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 邓振波

作者单位: 北京交通大学

项目金额: 85万元

中文摘要: 采用气相沉积法、模板法生长高度有序的有机纳米结构阵列并将其应用于聚合物光伏器件,制备有机纳米阵列与聚合物薄膜互穿交织的结构,以期同时提高光生激子的解离效率和载流子的输运和收集效率。具体研究内容为:①制备高载流子迁移率纳米尺度的有机半导体材料,引入界面引导或外部电场、磁场控制等方法控制纳米材料生长的分子排列取向及纳米生长方向,制备可应用于聚合物光伏器件活性层、纳米电极或界面修饰层的具有高载流子迁移率纳米尺度的有序结构阵列。研究分析有机纳米结构阵列的生长动力学过程并对其进行模拟及优化。②将制备的有机纳米结构阵列引入聚合物光伏器件,应用于活性层、纳米电极或电极修饰界面,研究纳米材料分子排列方向及生长取向对器件性能的影响,对聚合物与有机纳米阵列构成的互穿网络结构的接触界面进行系统研究,改善互穿网络的接触紧密度,并对互穿体系中激子的产生、扩散、解离机制进行分析,建立光动力学模型并优化器件。

中文关键词: 聚合物光伏器件;电极修饰;有机纳米材料;转换效率;

英文摘要: Highly ordered organic nano-structured arrays will be grown by using vapor-phase deposition or template growth method and applied in polymer solar cells (PSCs). PSCs with highly ordered organic nano-structured arrays and polymer interpenetrating structure are expected to improve the photo-induced excitation dissociation efficiency as well as improve the carrier transport and collection efficiency. The specific research contains: ① Preparation of high carrier mobility nano-sized organic semiconductor materials. By using interfacial template layer and/or external electric field or magnetic field, etc., to control the molecular orientation and nano-growth direction of the nano-materials, we will prepare highly ordered nano-structured organic arrays with high carrier mobility, which will be applied in photo-active layer, nano-electrode or interfacial modification layer in PSCs. We will also investigate and simulate the growth kinetics of organic nano-structured arrays and optimize the arrays. ② The prepared highly ordered organic nano-structured arrays will be applied in photo-active layer, nano-electrode, or electrode interface in PSCs. We will investigate the effect of molecular orientation and growth direction of nano-materials to PSCs performance. A systematic study for the interpenetrating contact interface bet

英文关键词: polymer solar cell;electrode modification;nano material;transfer efficiency;

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
94+阅读 · 2021年2月6日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
28+阅读 · 2021年10月1日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
57+阅读 · 2022年2月3日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
94+阅读 · 2021年2月6日
【BAAI|2019】用深度学习模拟原子间势,王涵  (附pdf)
专知会员服务
17+阅读 · 2019年11月21日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员