项目名称: 功能梯度材料对称结构的静动力学问题研究
项目编号: No.11202038
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 彭旭龙
作者单位: 长沙理工大学
项目金额: 24万元
中文摘要: 本项目以功能梯度材料对称结构(圆盘、圆筒、空心圆球等)为研究对象,考虑线弹性、热弹性及压电效应,建立物理性能沿半径方向任意变化的功能梯度材料对称结构的相关静、动力控制方程;提出一种新的简单有效的积分方程方法来进行求解,即通过一定的积分技巧,将所考虑的边值问题转化为Fredholm积分方程,然后利用求解Fredholm积分方程的数值方法来确定结构的应力分布及动力特性;通过和特殊梯度分布的已有精确解比较来检验该法的有效性和精度;研究各种不同的梯度变化形式下对称结构内的静动力学行为;探讨梯度参数、不同材料、结构几何参数、载荷以及各向异性度等对功能梯度对称结构应力分布及动力响应的影响。 开展本项课题的研究,将有助于深入了解功能梯度材料对称结构的静动力学行为,其研究工作可为功能梯度材料对称结构的力学分析、设计、新材料开发以及结构的优化设计提供理论基础和分析方法。
中文关键词: 功能梯度材料;对称结构;静力行为;动力特性;
英文摘要: The static and dynamic behaviors of functionally graded symmetric structures (such as functionally grade disk, hollow cylinder, hollow sphere, etc.) are analyzed in the project. Based on the theory of linear elasticity, thermo-elasticity and electro-elasticity, and by abandoning the usual gradient assumption such as exponential, power-law functions, etc., we only suppose that the gradient is continuous along the radial direction and establish the static/dynamic governing equations of functionally graded symmetric structures. A simple and efficient approach (Integral equation method) is put forward to investigate these problems. That is, the associated boundary-value problems are reduced to Fredholm integral equations and the distribution of stresses and displacements and dynamic characteristics can be determined by solving the resulting integral equation. The accuracy and effectiveness of the method will be checked by comparing the numerical results with the exact ones for a special gradient (like power-law profile). Emphasis is placed on the analysis of the static and dynamic behavior of functionally graded symmetric structures for different gradient forms and the influence of gradient parameter, different materials, geometrical parameters, loading and orthotropy degree on elastic fields and dynamic response. T
英文关键词: Functionally graded materials;Symmetric structures;Static behaviors;Dynamic characteristics;