项目名称: β-SiC(w+p)/Cu电子封装混杂复合材料界面调控及其对热传导影响机理的研究

项目编号: No.51271088

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 胡明

作者单位: 佳木斯大学

项目金额: 80万元

中文摘要: 目前,封装材料散热性致使电子产品失效的问题十分严重,制约了电子行业发展。作为电子封装材料主要组成的金属基复合材料虽得到了一定程度的应用,由于界面问题没有得到根本的解决,使其难以发挥更大的作用。 本课题选择导热性优于α-SiC的β-SiC增强体(颗粒和晶须)和铜粉为对象,提出利用等离子表面改性技术调控β-SiC增强体和铜间的界面结构,以达到进一步提高β-SiC(w+p)/Cu电子封装混杂复合材料热导率的新思路。 通过研究增强体注入层和铜膜随离子注入、磁控溅射和退火工艺的变化规律,研究铜在增强体中分布、扩散及铜膜形成机理,阐明增强体和铜间界面结构,揭示复合材料烧结和致密化机理,建立β-SiC增强体、界面和复合材料导热性间的内在关系,提出β-SiC(w+p)/Cu电子封装混杂复合材料界面调控机制和导热性的优化准则。 上述工作的开展及取得的结果将为电子封装材料的研制提供新的思考途径和理论基础。

中文关键词: SiC粉体改性;SiC/Cu混杂复合;电子封装材料;界面调控;热物性

英文摘要: So far, the low heat dispersion of packaging materials has caused failure of electron products, which restricts the development of electron packaging industry. Metal matrix composites, as main part of electron packaging materials, exhibited low thermal conductivity due to weak interface bonding, which deteriorated other properties. The β -SiC whiskers and particles in proper sizes and Cu powder will be chosen as test materials in the project. A new idea to increase the thermal conductivity of the composites by formation of strong bonding interface between SiC and Cu was proposed, which will made through ion impantation and magnetic sputtering technique on SiC dopped Cu ions and powder. The diffusion mechanism of Cu ions in the SiC powder will be stated, and the formation of Cu film on the SiC powder will be explained and moulded by adjusting technology parameters of the ion implantation and sputtering , the microstructures and crystallography will be investigated during annealing treatment, The optimal bonding mechanism and characteristics of interface between SiC and Cu will be given by control the technology specifications of annealing and sintering , the sintering and densification mechanisms of the composites will be discussed, both the microstructures and the influences of the interface on thermal co

英文关键词: SiC powder modification;SiC/Cu hybrid composite;electron packaging material;interface adjustion and control;thermal physical performance

成为VIP会员查看完整内容
0

相关内容

深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
70+阅读 · 2021年3月27日
专知会员服务
55+阅读 · 2020年12月20日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
流畅的Python 中英文版 PDF 高清电子书
专知会员服务
80+阅读 · 2020年8月2日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
年前你想攒钱买什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月19日
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
一张图带你回顾华为冬季旗舰新品发布会
ZEALER订阅号
0+阅读 · 2021年12月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
70+阅读 · 2021年3月27日
专知会员服务
55+阅读 · 2020年12月20日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
流畅的Python 中英文版 PDF 高清电子书
专知会员服务
80+阅读 · 2020年8月2日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
相关资讯
年前你想攒钱买什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月19日
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
一张图带你回顾华为冬季旗舰新品发布会
ZEALER订阅号
0+阅读 · 2021年12月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员