项目名称: 基于锗纳米线场效应管的实时电流定量PCR微芯片研究

项目编号: No.61302052

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 许宝建

作者单位: 中国科学院上海微系统与信息技术研究所

项目金额: 28万元

中文摘要: 实时荧光定量PCR技术为致病微生物检测提供了有效手段,但由于其光学结构复杂、难以小型化,不能满足公共安全突发事件现场快速检测的迫切需求。本项目提出一种新型实时定量PCR微芯片,其集成了用于微电流检测的锗纳米线场效应管和用于核酸扩增的温控电极;在芯片小型化的同时,锗线以其优异的材料特性和丰富的表面修饰方法保证了核酸检测的灵敏度和特异性。在已有锗线制作和芯片集成的基础上,本项目通过优化SiGe纳米带尺寸、组分和硼掺杂浓度进一步提高锗线的灵敏度;重点解决锗线上核酸探针如何特异性识别PCR产物的问题,探讨不同离子强度扩增体系和不同探针序列对场效应管电流的影响;摸索场效应管上核酸杂交的合适温度范围,并结合PCR反应温度确定检测时的最佳温度,通过分时控制采集的方法记录场效应管的实时电流;最终,建立不同浓度模板进行PCR的实时电流变化曲线,确定关键参数阈值和CT值,5分钟内实现致病微生物的现场鉴定分析。

中文关键词: 锗纳米线;锗浓缩技术;生物传感器;PCR微芯片;场效应管

英文摘要: Real-time fluorescent quantitative polymerase chain reaction (real-time PCR) provided an effective technology for detection of pathogenic microorganisms. However, due to its complex optical structure and difficult to miniaturization, real-time PCR could not meet the needs for in-field and rapid detection in public safety emergencies. This project proposed a new real-time quantitative PCR microchip, which integrated with germanium-nanowire-based field effect transistor (FET) for micro-current detection and the temperature control micro-electrodes for nucleic acid amplification in PCR. Microchip could be miniaturized, and germanium nanowire with its excellent material properties and surface modification methods ensured the sensitivity and specificity of nucleic acid detection in PCR. On the basis of our existing germanium nanowire production and chip integration, dimension and composition of SiGe nanobelt, and boron doping concentration would be optimized to further improve the sensitivity of germanium nanowire. And, the project would aim to solve the key issue on PCR product specific recognition with nucleic acid probes on nanowire, and explore some conditions, such as, PCR buffer with different ionic strength, different probe sequences, which impacted on FET currents. Because hybridizations between PCR products

英文关键词: germanium nanowire;germanium enrichment technology;biosensor;PCR microchip;field effect transistor

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
《人工智能芯片基准测试评估方法》行业标准
专知会员服务
80+阅读 · 2022年2月20日
专知会员服务
27+阅读 · 2021年10月6日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
25+阅读 · 2021年4月2日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
27+阅读 · 2021年1月29日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
把DNA换成RNA,有望创造强大、可持续的生物计算机
大数据文摘
0+阅读 · 2022年3月31日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年5月5日
Filtering and Sampling Object-Centric Event Logs
Arxiv
0+阅读 · 2022年5月3日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
《人工智能芯片基准测试评估方法》行业标准
专知会员服务
80+阅读 · 2022年2月20日
专知会员服务
27+阅读 · 2021年10月6日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
25+阅读 · 2021年4月2日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
27+阅读 · 2021年1月29日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员