项目名称: 基于知识域与数据域协同的图像压缩算法研究

项目编号: No.61202139

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 计算机科学学科

项目作者: 徐迈

作者单位: 北京航空航天大学

项目金额: 25万元

中文摘要: 近年来,随着苹果等智能手机的发展以及无处不在的微博、在线视频等各类新型网络业务的普及,无线通信需传输的多媒体数据量变得日益庞大。因此,图像/视频压缩在无线多媒体通信中日趋重要。传统图像压缩算法大多基于数据域,通过预定义的正交基变换实现,占大量存储空间,不利于图像/视频高效传输。另一种新的研究思路为:在知识域上,即利用事物归纳后的知识集合,通过图像理解标识图像中物体的类别,进而应用于图像压缩,从而大幅提高图像压缩效率;该研究在国际上尚处于起步阶段。本项目将利用已有研究基础,以提高图像压缩率为目标,研究内容为:(1)借鉴人类逻辑思维与图像认知机理,在知识域上研究统计学习与逻辑法则学习相结合的图像理解算法;(2)在数据域上研究各类物体纹理字典的机器学习算法及其稀疏表示的计算模型;(3)融合数学模型与图像认知,构建数据域与知识域协同的图像压缩体系框架。本项目将为图像压缩提供新的理论依据与技术支持。

中文关键词: 多媒体技术;图像压缩;字典学习;稀疏表示;图像理解

英文摘要: Most recently, due to the rapid development of smart phones such as iphone and the popularity of cutting-edge Internet services such as Weibo and Youku, the multimedia data delivered over wireless networks have become increasingly huge. Therefore, the demand for image compression is becoming urgent in wireless multimedia communications. Traditional methods approach the image compression in data domain via the transform with a set of orthogonal bases that have been predefined, thereby requiring the large storage space for data and making against the fast delivery for image/video. In knowledge domain (i.e. the sets of knowledge generalized from natural objects), the image understanding methods target to extract the features and class labels of objects in an image, and they may be applied to image compression, as another way, in order to improve the efficiency of image compression. However, currently the research on this topic is still in its infancy. For improving the compression efficiency of images, in light of human logic and perception mechanisms, we shall focus on the fundamental problems of image compression on the basis of the previous research results of this project. More specifically, (1) in knowledge domain we shall deal with the image understanding problem by combining the statistical learning and log

英文关键词: Multimedia technology;Image compression;Dictionary learning;Sparse coding;Image understanding

成为VIP会员查看完整内容
0

相关内容

稀疏表达的效果好坏和用的字典有着密切的关系。字典分两类,一种是预先给定的分析字典,比如小波基、DCT等,另一种则是针对特定数据集学习出特定的字典。这种学出来的字典能大大提升在特定数据集的效果。
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
66+阅读 · 2021年12月29日
专知会员服务
33+阅读 · 2021年9月29日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
70+阅读 · 2021年3月29日
专知会员服务
36+阅读 · 2021年2月20日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
31+阅读 · 2021年2月7日
专知会员服务
79+阅读 · 2020年12月6日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
【知识图谱】知识图谱怎么与深度学习结合?
产业智能官
159+阅读 · 2018年12月18日
一文读懂图像压缩算法
七月在线实验室
17+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
41+阅读 · 2018年4月26日
基于GAN的极限图像压缩框架
论智
11+阅读 · 2018年4月15日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
基于图片内容的深度学习图片检索(一)
七月在线实验室
20+阅读 · 2017年10月1日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月16日
Sensitivity of sparse codes to image distortions
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月15日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2017年7月4日
小贴士
相关VIP内容
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
66+阅读 · 2021年12月29日
专知会员服务
33+阅读 · 2021年9月29日
专知会员服务
32+阅读 · 2021年7月26日
专知会员服务
70+阅读 · 2021年3月29日
专知会员服务
36+阅读 · 2021年2月20日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
31+阅读 · 2021年2月7日
专知会员服务
79+阅读 · 2020年12月6日
相关资讯
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
【知识图谱】知识图谱怎么与深度学习结合?
产业智能官
159+阅读 · 2018年12月18日
一文读懂图像压缩算法
七月在线实验室
17+阅读 · 2018年5月2日
如何设计基于深度学习的图像压缩算法
论智
41+阅读 · 2018年4月26日
基于GAN的极限图像压缩框架
论智
11+阅读 · 2018年4月15日
基于深度学习的图像目标检测(下)
机器学习研究会
12+阅读 · 2018年1月1日
基于图片内容的深度学习图片检索(一)
七月在线实验室
20+阅读 · 2017年10月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员