项目名称: 堆栈有序少层石墨烯单晶体的可控性制备及其光电属性研究
项目编号: No.61474077
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 无线电电子学、电信技术
项目作者: 窦卫东
作者单位: 绍兴文理学院
项目金额: 79万元
中文摘要: 少层石墨烯(FLG)的可控性生长是石墨烯研究的重点。提高单晶颗粒尺度和厚度均一性、调控层间堆叠结构是FLG制备研究的主要目标。以多晶镍为基底利用化学气相沉积法(CVD)可实现少层及多层石墨烯的制备。然而,利用传统CVD方法制备的石墨烯存在厚度不均、晶粒小等瓶颈问题。解决上述问题的关键在于对渗碳的抑制。本课题提出有氧环境下的CVD制备新方法,拟以杂质氧为调控要素,采用底层抑制渗碳与顶层刻蚀多层石墨烯相结合的方法,调控石墨烯的生长行为。研究内容:(1)FLG的可控性生长及其生长动力学行为;(2)氧在石墨烯CVD生长过程中的作用机制;(3)FLG堆栈结构的调控机制;(4)FLG的光电属性及其在有机光伏、纳米光电子器件等领域的应用。本研究将揭示少层石墨烯生长中的未知机制,实现具有毫米级晶粒尺寸且堆栈有序的少层石墨烯的可控性制备。本课题有望突破石墨烯制备的瓶颈问题,因而具有较高学术和应用价值。
中文关键词: 石墨烯;薄膜生长;纳米薄膜;光电特性
英文摘要: The controlled growth of few layer graphene (FLG) is an important topic which aims either to increase the domain size and thickness uniformity or to control the number of layers and stacking order of FLG. The chemical vapour deposition(CVD) on nickel(Ni) substrate was frequently used in the fabrication of FLG and multi-layer graphene. However, graphene made by the traditional CVD method suffers from drawbacks like poor thickness uniformity and small grain size. The depression of carbon dissovability in Ni substrate is a key factor for the controllable growth of FLG. In this study, the traditional CVD method was modified and imporved by introducing oxygen impurity in the CVD chamber. With the assistance of oxygen impurity, the controllable growth of FLG can be achieved by a combination of depression of carbon dissolvability and etching by hydrogen. The topics of this study includes, (1) the growth dynamics and controllable fabrication of FLG; (2) the mechanism of oxygen impurity in the growth process of graphene; (3)the ways to modify the stacking order of FLG and the mechanism behind; (4)study on the opto-electric properties of FLG and its application in fields like organic photovolatic devices and nano-optoelectric devices. We intend to discover the unknown factors which influence the growth of graphene, and to achieve a controllable fabrication of FLG with at least millimeter grain size and order stacking. The bottleneck problem in graphene fabrication is expected to be overcomed in this study, which enhances the importance of this study in the sense of science and technology.
英文关键词: graphene;film growth;nano film;opto-electrical properties