项目名称: 基于直接外延的硅基III-V族半导体微腔激光器研究

项目编号: No.61504137

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 周旭亮

作者单位: 中国科学院半导体研究所

项目金额: 20万元

中文摘要: 微电子技术遇到物理和工艺双重挑战,人们将目光转移到能够满足信息时代需求的硅基光子集成上来。然而,硅基光子集成最重要的一个问题没有解决—光源。与硅工艺兼容的IV族材料体系作为有源区的硅基激光器还远远没有达到实用化的程度;近年来发展较为迅速的硅基InAs量子点激光器由于可靠性的问题尚未大规模使用;性能较为优异的混合激光器由于成品率较低难以大规模集成。针对这些问题,本项目以直接异质外延获得的高质量硅基III-V族半导体材料为基础,通过研究InGaAs/GaAs为有源区的光学微腔的回音壁模式、光场分布、品质因子等性质,以数值模拟为参考,制作硅基微腔激光器。并且研究微腔激光器中光的耦合输出以及功率、光谱、可靠性等问题。本项目采用的直接外延方案可以为大规模集成做铺垫;微型激光器可以降低硅基异质外延产生的损耗对激光器的影响。本研究为硅基光源提供一种微型激光器的理论和方案支持,为硅基光子集成提供技术积累。

中文关键词: 硅基激光器;半导体微腔激光器;光学微腔;回音壁模式;异质外延

英文摘要: Due to the physical and technological challenges which the current microelectronic technology encounters, people pay more attention to Silicon photonic integrated circuits (PICs) to satisfy demand of the information age. However, the most important issue of Si PICs remains unresolved, which is the light source. Lasers based on IV materials which are compatible with Si CMOS process are far from practical use. Because of the reliability problems, the booming InAs quantum dot lasers are not suitable for large-scale application. The yeild problem of high-performance hybrid lasers prevent their large-scale integration (LSI). To solve these problems, this project aims to fabricate microcavity laser on Si based on high quality III-V semiconductors on Si and microcavity simulation alalysis, through the research of the Whispering-Gallery Modes, the optical field distribution, and quality factor of InGaAs/GaAs optical microcavities. It also studies the microcavity coupling issues, output power, spectra, reliability and so on. The direct heteroepitaxy method could prepare for the LSI and the small size is the key factor to reduce the loss caused by defects during the heteroepitaxy of III-V on Si. The project can provide an theory and solution support of microlaser for Si light source and necessary technology accumulation for Si PICs.

英文关键词: Laser on Si;Semiconductor micolaser;Optical microcavity;whispering-gallery modes (WGM);Heteroepitaxy

成为VIP会员查看完整内容
0

相关内容

【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
43+阅读 · 2021年7月6日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
电子科大最新《深度半监督学习》综述论文,24页pdf
专知会员服务
89+阅读 · 2021年3月6日
专知会员服务
21+阅读 · 2020年9月14日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
25+阅读 · 2022年1月3日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员