项目名称: 情绪因素对网络搜索预测的影响研究:以旅游市场为例
项目编号: No.71202115
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 工商管理
项目作者: 刘颖
作者单位: 中国科学院大学
项目金额: 21.5万元
中文摘要: 客流量预测是旅游营销和运营的重要环节,针对传统预测模型难以捕获当前市场最新动态的缺陷,近3年兴起的基于网络搜索数据的预测方法能够弥补该不足,及时发现市场热点并反映关注强度,但同时也存在不能体现倾向性等情绪因素的局限性。三亚"宰客门"案例表明,倾向性等情绪因素对未来市场走势产生重要影响,预测客流量必须考虑情绪因素的作用。最新研究表明,微博数据蕴涵了众多用户的情绪信息,且具有显著预测能力。本课题拟建立搜索行为、情绪互动行为、旅游决策之间的关联模型,在网络搜索预测建摸的基础上,探索从微博"情绪数据库"中挖掘旅游倾向性等情绪指标,进一步研究情绪因素对搜索预测模型效果的修正作用,在此基础上,探索实现搜索数据和微博数据优势互补的新方法,并建立混合模型对旅游客流量进行预测。本研究从一个新视角丰富了旅游消费行为理论,在客流量预测方面具有创新价值,也可以为相关管理部门提供及时、可靠的决策依据。
中文关键词: 客流预测;网络搜索;情绪因素;微博;噪声处理
英文摘要: Tourist arrivals prediction is an important part of tourism marketing and operations, but it's difficult for traditional forecasting model to capture the latest market movement. In recent 3 years, improvement was made on the defect of traditional forecasting model by adding Internet search variables, which discover market hotspots and reflect its attention-degree timely, whereas this method has its limits in lacking of emotion factors like emotional tendency. "Sanya Overcharge Event" showed that the tendency, feelings and other emotional factors have significant impact on future market trends, so it is necessary to consider the role of emotional factor in Tourist arrivals forecast. It has been showed that the microblog-data implies the sentiment of numerous users and has significant predictive ability by the latest studies. This research would establish the correlation model of search behavior, emotional interaction behavior and tourist decision-making behavior, on the basis of forecast model of Internet search data, explore to mining the emotion indicators from the'Microblog Emotion Database', further analyze the impact of emotion factors on the Internet search-based prediction model. On these bases, this research would explore new prediction method of combining search data and microblog data to make the advant
英文关键词: Tourist arrival prediction;Internet search data;Emotion factors;Micro blog;Noise processing