项目名称: 多功能磁性纳米催化剂的逆向合成及其应用研究

项目编号: No.21271175

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 张海涛

作者单位: 中国科学院过程工程研究所

项目金额: 80万元

中文摘要: 磁性材料性能受其电子能带结构和微结构影响,性质调控研究作为交叉前沿领域一直是众多学科(化学、物理、材料、生物和工程等)的重要研究课题。基于资源环境的考虑,催化材料应具有高活性、高选择性和高可回收性。本项目拟通过逆向思维设计和合成多功能磁性纳米催化剂,研究异质复合纳米材料的逆向合成工艺技术及其协同性质与微结构之间的相互作用关系,发展纳米工程学和催化科学,属于较强的前瞻性、探索性的应用基础研究领域。研究将以磁性纳米粒子、催化性的贵金属纳米团簇和半导体单层纳米片作为基本结构单元在强磁场强化下进行高度有序性地组装集成,获取具有可调微孔及大量异质界面的新型的复合多功能材料;探索制备多功能材料的新型化学路径及工艺技术;考察材料微孔及界面对催化反应性能的影响;研究不同物质间相互作用引起的协同性质。为研究、开发绿色催化材料和工艺技术等高科技领域及其它有广泛应用前景的多功能复合材料提供理论依据和应用基础。

中文关键词: 多功能;纳米磁性;纳米催化剂;逆向合成;固体酸

英文摘要: Novel types of magnetically-recoverable multifunctional nanocatalysts with improved activity and high selectivity are greatly needed to reduce environmental burden arising from energy shortage and resource utilization. By building on chemical exfoliation and three-dimensional (3D) integration techniques, this project aims to develop novel bottom-up retrosynthetic protocals for the creation of magnetic multifunctional nanocatalysts with tunable basic building blocks: magnetic nanoparticles, catalytic noble metal nanoclusters and exfoliated single-crystal nanosheets. Improved ordering of these organized blocks could be attained with the introduction of high-strong magnetic field (up to 10 Tesla). Band energy gap and microstructures, such as pore sizes and bridged forms, of the as-synthesized hybrid nanostructures can be engineered systematically by controlling the combinations modes of these anisotropic building blocks. This project will clarify the microstructure/interface-property relationships in these novel hybrid nanocatalysts, and will provide an improved understanding of the origin of synergetic effects in multicomponent systems. The success of this project will also enhance nanofabrication techniques and nanoengineering discipline in China, accelerating creation of sustainable materials and technologies t

英文关键词: Multifunction;Nanomagnetism;Nanocatalyst;Retrosynthesis;Solid acid

成为VIP会员查看完整内容
0

相关内容

专知会员服务
36+阅读 · 2021年10月16日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
46+阅读 · 2021年6月27日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
领域应用 | 中医临床知识图谱的构建与应用
开放知识图谱
33+阅读 · 2017年12月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关主题
相关VIP内容
专知会员服务
36+阅读 · 2021年10月16日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
46+阅读 · 2021年6月27日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员