项目名称: 高频强迫振动和自激振动耦合型摩擦驱动机理及其在超声电机中的应用研究

项目编号: No.51275242

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 丁庆军

作者单位: 南京航空航天大学

项目金额: 40万元

中文摘要: 高频振动在精密机床、汽车制动系统、钻探、超声加工、超声焊接、超声电机等摩擦驱动领域有重大的影响。其中超声电机技术近二十年来发展迅猛,但是摩擦驱动效率低、稳定性差等问题严重制约了其在各个领域的应用。本项目以超声电机为研究对象,研究高频强迫振动和定转子之间摩擦自激振动的耦合效应,在此基础上研究微观接触表面形态及电机接触摩擦界面性能;针对定子表面质点独特的椭圆运动驱动转子的方式,研究摩擦材料对超声电机摩擦驱动效率的影响,建立摩擦材料弹性模量非线性、各向异性与摩擦驱动效率之间的数学描述,通过材料设计提高超声电机的运行效率。同时,对摩擦界面的定子表面进行形态仿生学设计,研究非光滑表面的摩擦驱动性能和摩擦磨损机理,提高摩擦驱动效率和摩擦系数的稳定性,降低定转子之间的粘合性,从而提高超声电机的稳定性,初步建立高频振动下接触和摩擦驱动的传递模型,掌握高频振动下的摩擦驱动基本规律。

中文关键词: 高频振动;耦合;摩擦材料;表面织构;超声电机

英文摘要: High-frequency vibration has a significant impact on precision machine tools, automotive braking systems, drilling, ultrasonic machining, ultrasonic welding, ultrasonic motors and other friction drive. The ultrasonic motor technology has arapid development in the past two decades, but due to the low friction drive efficiency, poor stability, the ultrasonic motor is restricted with its application in various fields. The project takes the ultrasonic motor as the research subjiect. The coupling effects between the high-frequency forced vibration and the self-excited vibration between stator and rotor on the driving frequency,the contact state will be studied.Due to particle's elliptical motion on the stator driving the rotor, friction materials with nonlinear elastic modulus and anisotropy friction material are prepared for increasing efficiency of the ultrasonic motor, and relation between nonlinear of elastic modulus, anisotropy and will be developed. Interface morphology bionics design on the surface of the stator is taken for increasing stability of friction driving, reducing the adhesion between the stator and rotor. Thereby the the efficiency and stability of the ultrasonic motor are enhanced, and the basic law of high-frequency vibrations and new technology for high frequency vibration of the friction driv

英文关键词: high frequency vibration;coupling effect;friction material;surface texture;ultrasonic motor

成为VIP会员查看完整内容
0

相关内容

自编码器26页综述论文:概念、图解和应用
专知会员服务
27+阅读 · 2022年3月5日
产业元宇宙白皮书(2021-2022)
专知会员服务
113+阅读 · 2022年2月18日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
43+阅读 · 2021年5月24日
专知会员服务
49+阅读 · 2020年12月19日
【ACL2020-Google】逆向工程配置的神经文本生成模型
专知会员服务
16+阅读 · 2020年4月20日
BERT技术体系综述论文:40项分析探究BERT如何work
专知会员服务
138+阅读 · 2020年3月1日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
最快明年到来!iPhone 的这个新设计,让我拍手称快
ZEALER订阅号
0+阅读 · 2021年12月27日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年5月3日
小贴士
相关主题
相关VIP内容
自编码器26页综述论文:概念、图解和应用
专知会员服务
27+阅读 · 2022年3月5日
产业元宇宙白皮书(2021-2022)
专知会员服务
113+阅读 · 2022年2月18日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
43+阅读 · 2021年5月24日
专知会员服务
49+阅读 · 2020年12月19日
【ACL2020-Google】逆向工程配置的神经文本生成模型
专知会员服务
16+阅读 · 2020年4月20日
BERT技术体系综述论文:40项分析探究BERT如何work
专知会员服务
138+阅读 · 2020年3月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员