项目名称: 聚类集成的原理与方法及其在图像视频分割中的应用

项目编号: No.61203239

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 马雷

作者单位: 中国科学院自动化研究所

项目金额: 24万元

中文摘要: 集成(融合)决策是模式识别机器学习的一个重要研究手段,分类集成的广泛应用已经验证了通过融合可以提高识别结果的有效性。聚类也是基本的模式分析任务之一,聚类集成可以用于增强聚类结果的有效性,还可以用于很多非一般性的聚类问题。由于其研究历史比较短,许多问题尚需进一步研究。本课题对聚类集成的基本理论及其应用进行了分析,发现以下问题亟待解决:(1)聚类集成的理论基础与准则函数的基本性质,(2)适用于大规模数据集的高效集成算法,(3)面向低维特定领域的聚类集成应用。课题将借鉴相关集成决策(即:分类集成、排序集成以及社会选择理论)的思路与方法来研究探索聚类集成的基本理论,以此为基础设计高效的聚类集成算法,并结合领域知识、适宜的优化方法来解决视频(场景、镜头)分割、图像分割中的多方法集成。通过此课题的研究,要进一步完善聚类集成的理论基础,提高聚类集成的有效性与实用性,拓宽其在具体任务上的应用。

中文关键词: 数据碎片;聚类集成;图像分割;;

英文摘要: Ensemble (or, fusion, aggregation) based decision is an important research topic in pattern recognition and machine learning. A wide range of applications of classification ensemble has validated the effectiveness of information ensemble. Data clustering is also one of the baisc pattern analysis tasks. Although clustering ensemble has been used in improving clustering results as well as many other unsupervised data processing problems, there is still much space for the investigation of more effecitve clustering ensemble algorithms. Based on the reviewing of previous literature on clustering ensemble, we found that the following problems are still not well studied: (1) the theoretical basis of clustering ensemble and the basic properties of the criterion function used in ensemble, (2) efficient clustering ensemble algorithms are used on large scale dataset, and (3) the applications in low-dimensinal data segmentation. To this end, this project plans to introduce the recent development in classification ensemble, rank aggregation, and social choice theory to explore the theoretical basis of clustering ensemble. Then efficient ensemble algorithms are investigated and proposed. Finally, this project will intergrate the domain knowledge and appriproate optimization methods to solve the low-dimensional data segmentati

英文关键词: data fragmentation;clustering ensemble;image segmentation;;

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】整合少样本学习的分类和分割
专知会员服务
28+阅读 · 2022年3月31日
【CVPR2022】ContrastMask:对比学习来分割各种
专知会员服务
20+阅读 · 2022年3月21日
专知会员服务
215+阅读 · 2021年8月2日
专知会员服务
33+阅读 · 2021年6月18日
计算机视觉实战演练:算法与应用
专知会员服务
50+阅读 · 2021年6月6日
专知会员服务
96+阅读 · 2021年2月6日
专知会员服务
44+阅读 · 2020年12月8日
哪款应用的算法推荐让你觉得很准?
ZEALER订阅号
0+阅读 · 2022年4月9日
【CVPR2022】整合少样本学习的分类和分割
专知
2+阅读 · 2022年3月31日
计算机视觉,凉了?
CVer
2+阅读 · 2022年3月23日
NeurIPS 2021 | 物体检测与分割的零标签视觉学习
微软研究院AI头条
0+阅读 · 2021年12月1日
YOLO算法的原理与实现
机器学习研究会
43+阅读 · 2018年1月19日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
30+阅读 · 2021年8月18日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
22+阅读 · 2018年8月30日
小贴士
相关VIP内容
【CVPR2022】整合少样本学习的分类和分割
专知会员服务
28+阅读 · 2022年3月31日
【CVPR2022】ContrastMask:对比学习来分割各种
专知会员服务
20+阅读 · 2022年3月21日
专知会员服务
215+阅读 · 2021年8月2日
专知会员服务
33+阅读 · 2021年6月18日
计算机视觉实战演练:算法与应用
专知会员服务
50+阅读 · 2021年6月6日
专知会员服务
96+阅读 · 2021年2月6日
专知会员服务
44+阅读 · 2020年12月8日
相关资讯
哪款应用的算法推荐让你觉得很准?
ZEALER订阅号
0+阅读 · 2022年4月9日
【CVPR2022】整合少样本学习的分类和分割
专知
2+阅读 · 2022年3月31日
计算机视觉,凉了?
CVer
2+阅读 · 2022年3月23日
NeurIPS 2021 | 物体检测与分割的零标签视觉学习
微软研究院AI头条
0+阅读 · 2021年12月1日
YOLO算法的原理与实现
机器学习研究会
43+阅读 · 2018年1月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员