项目名称: 碳纳米空腔体系的内诱导电荷转移和非线性光学性质

项目编号: No.21473026

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 徐红亮

作者单位: 东北师范大学

项目金额: 86万元

中文摘要: 非线性光学材料由于其在激光及光通讯领域的广泛应用而引起理论与实验化学家的广泛关注。其中申请者发现纳米结构的合理引入可以使材料的非线性光学响应显著增强,且往往能显示出常规材料不具备的新特性。在本项目中,零维的富勒烯、一维的纳米管和二维的纳米芽被选择作为碳纳米空腔载体。申请者拟选择适当的极性分子(如:一维锂盐LiF,LiCN等)掺杂到碳纳米空腔中的不同位置。由于极性分子对空腔体系的诱导效应,可以从内部改变空腔体系的电子结构并产生有效的电荷转移.进一步通过调整内掺杂分子极性的大小调控体系电荷转移的程度,以此提出构造稳定的高性能非线性光学纳米材料分子的新思路,为实验化学家合成高性能的非线性光学纳米材料提供重要的理论成果。

中文关键词: 密度泛函理论;分子设计;诱导效应;纳米材料;非线性光学性质

英文摘要: Due to its wide application in the field of laser and optical communications field,the nonlinear optical materials caused widespread concern in the theoretical and experimental chemists. Applicants found that, the nanostructures reasonable introduction can significantly enhance the nonlinear optical response and those nanostructures often show new features which are different from conventional materials. In the present project, the zero-dimensional fullerenes, one-dimensional nanotubes and two-dimensional nanobud are chosen as the carbon nano-cavity carrier. The applicant intends to select the appropriate polar molecules (for example,one-dimensional Lithium salt LiF, LiCN et.al.) doped into carbon nano-cavity.Because of the interaction between polar molecules and cavity system, the doped polar molecules can induce that the electronic structure of nano-cavity is changed to receive efficient charge transfer. Further, the charge transfer can controlled through use of different doped polar molecules. We hope that present project can propose the new designing idea of the stable and high-performance nonlinear optical nanomaterials molecules. And provide important theoretical results to experimental chemists for synthesis of high-performance nonlinear optical nanomaterials.

英文关键词: Density Functional Theory;Molecular Design;Induced Effect;Nano-material;Nonlinear Optical Property

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】基于变分信息瓶颈的图结构学习
专知会员服务
19+阅读 · 2021年12月18日
《过参数化机器学习理论》综述论文
专知会员服务
45+阅读 · 2021年9月19日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
40+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
27+阅读 · 2021年3月17日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年7月16日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
GPU 计算和深度学习在药物发现中的转型作用
机器之心
1+阅读 · 2022年5月2日
使用深度学习,通过一个片段修饰进行分子优化
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
19+阅读 · 2020年7月21日
小贴士
相关VIP内容
【AAAI2022】基于变分信息瓶颈的图结构学习
专知会员服务
19+阅读 · 2021年12月18日
《过参数化机器学习理论》综述论文
专知会员服务
45+阅读 · 2021年9月19日
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
40+阅读 · 2021年9月7日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
27+阅读 · 2021年3月17日
专知会员服务
51+阅读 · 2020年12月28日
专知会员服务
50+阅读 · 2020年7月16日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员