项目名称: 基于微腔和耦合腔效应的超紧凑、超快响应表面等离激元全光调制器

项目编号: No.61475002

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 李智

作者单位: 北京大学

项目金额: 83万元

中文摘要: 金属表面等离激元(SPP)近年来受到广泛关注,被认为是下一代信息技术的可能候选之一。在各种有源SPP器件当中,表面等离激元的全光调制器是关键之一,它是构成基于表面等离激元的集成全光回路不可缺少的重要部分。然而,由于受到光学材料较弱的光学非线性效应和表面等离激元结构有限的灵敏度的限制,已有工作中普遍存在的问题是器件结构尺度大、难以高度集成,并且很难同时获得超快的响应速度和较低的泵浦功率。 申请人在前期工作中发现,基于微腔效应特别是耦合腔效应的超紧凑表面等离激元结构对光学非线性材料的折射率改变具有很高的灵敏度。因此,本项目计划将这些高灵敏表面等离激元结构与具有超快响应和大光学非线性系数的聚合物PS(Polystyrene)及其掺杂体系相结合,从而在实验上实现具有超快响应速度的超紧凑SPP全光调制器。这种高性能的表面等离激元全光调制器有可能在下一代基于SPP的超高集成度全光回路中获得应用。

中文关键词: 表面等离激元;全光调制;超紧凑;超快响应;耦合腔效应

英文摘要: Surface plasmon polaritons (SPPs) have attracted great research interests in the area of ultracompact photonic circuits, because of their strong field confinement and enhancement. All-optical modulator on SPPs is an essential component for realizing SPP-based optical communication and computing networks. However, because of the weak nonlinear light-matter interactions, the challenge of realizing SPP modulations with high modulating depths is enormous, especially with ultrafast response times and in ultratracompact structures. In the previous works, we have found that ultracompact plasmonic structures based on cavity effects especially coupled-cavity effects are very sensitive to the refractive index changes of optical nonlinear materials. So this project will combine these ultra-sensitive plasmonic structures with Polystyrene and Polystyren with proper dopings which are high-performance nonlinear optical materials having both ultrafast response times and large optical nonlinear coefficients. Thus, highly efficient and ultrafast all-optical SPP modulation can be realized in ultracompact structures. These SPP modulators may have wide applications in the next-generation SPP-based photonic circuits.

英文关键词: SPP;all-optical modulation;ultracompact;ultrafast;coupled-cavity effects

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
32+阅读 · 2022年3月18日
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
14+阅读 · 2021年11月18日
专知会员服务
13+阅读 · 2021年9月23日
专知会员服务
43+阅读 · 2021年7月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
49+阅读 · 2020年6月14日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
199+阅读 · 2019年9月30日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
32+阅读 · 2022年3月18日
【AAAI2022】基于渐进式增强学习的人脸伪造图像检测
专知会员服务
21+阅读 · 2022年1月19日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
14+阅读 · 2021年11月18日
专知会员服务
13+阅读 · 2021年9月23日
专知会员服务
43+阅读 · 2021年7月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
49+阅读 · 2020年6月14日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
199+阅读 · 2019年9月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
微信扫码咨询专知VIP会员