项目名称: 针对FPGA协处理器的高速布局布线算法研究

项目编号: No.61202073

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 计算机科学学科

项目作者: 罗国杰

作者单位: 北京大学

项目金额: 25万元

中文摘要: FPGA协处理器能支持可重构计算,在特定应用中实现高性能低能耗的计算。然而,FPGA程序的编译时间(高层次综合、逻辑综合、布局布线)远远大于同等功能的CPU程序的编译时间。漫长的编译时间降低开发效率,阻碍了软件工程师应用FPGA协处理器与可重构计算。在FPGA编译过程里,布局布线占了大概四分之三的时间;为了缩短编译时间,我们打算开发高速的布局布线器,实现比现有布局布线器快10倍至100倍的效果。首先,我们会对现有布局器做最优化研究,并开发一个高质量的支持现代异构FPGA体系结构的布局器。之后,我们将采用算法加速(采用解析式算法和高层次方法)和并行加速的手段,来使我们的布局器以及一个基于协商的布线器达到最大的加速效果。另外,我们将开发一套开放源代码的FPGA物理综合流程,以推动可重构计算的研究。

中文关键词: FPGA协处理器;物理设计;布线;并行化;计算加速

英文摘要: FPGA co-processors support reconfigurable computing, which enables low-energy and high-performance computation for specific applications. However, the compilation time for FPGAs (including high-level synthesis, logic synthesis, placement and routing) is significantly longer than the compilation time of a functionally-equivalent program for CPUs. The long compilation time reduces productivity and prohibits the adoption of FPGA co-processors and reconfigurable computing by software engineers. Since the placement and routing time consumes almost 3/4 of the total runtime, in order to accelerate the compilation time, we are going to develop ultra-fast placement and routing tools that are 10X to 100X faster than existing tools. To get start, we will examine the optimality of existing placers and develop our own high-quality placer compatible with modern heterogeneous FPGA architectures. This placer and an existing negotiation-based router will be accelerated through algorithm enhancements (e.g., analytical method, multilevel method) and parallelism. In addition, an open-source FPGA physical design flow will be developed for further study of reconfigurable computing.

英文关键词: FPGA co-processor;physical design;routing;parallelization;acceleration

成为VIP会员查看完整内容
1

相关内容

深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
58+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
【博士论文】分形计算系统
专知会员服务
34+阅读 · 2021年12月9日
FPGA加速深度学习综述
专知会员服务
70+阅读 · 2021年11月13日
专知会员服务
19+阅读 · 2021年6月29日
最新《计算机体系结构和系统的机器学习》综述论文
专知会员服务
55+阅读 · 2021年2月17日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
66+阅读 · 2020年6月24日
专知会员服务
81+阅读 · 2020年6月20日
「深度神经网络 FPGA 」最新2022研究综述
专知
3+阅读 · 2022年3月26日
【博士论文】分形计算系统
专知
3+阅读 · 2021年12月9日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
【仿真】国内外CAE软件的差距及自主路
产业智能官
32+阅读 · 2018年12月20日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
Arxiv
17+阅读 · 2020年11月15日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
31+阅读 · 2018年11月13日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
27+阅读 · 2017年12月6日
小贴士
相关VIP内容
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
58+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
【博士论文】分形计算系统
专知会员服务
34+阅读 · 2021年12月9日
FPGA加速深度学习综述
专知会员服务
70+阅读 · 2021年11月13日
专知会员服务
19+阅读 · 2021年6月29日
最新《计算机体系结构和系统的机器学习》综述论文
专知会员服务
55+阅读 · 2021年2月17日
FPGA加速系统开发工具设计:综述与实践
专知会员服务
66+阅读 · 2020年6月24日
专知会员服务
81+阅读 · 2020年6月20日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员