项目名称: Fe掺杂的SnO2纳米颗粒的制备和穆斯堡尔谱研究

项目编号: No.11205160

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学II

项目作者: 刘忻

作者单位: 中国科学院大连化学物理研究所

项目金额: 25万元

中文摘要: 纳米半导体材料SnO2由于其优异的气敏和光学特性,引起了人们广泛的兴趣,特别是过渡金属掺杂的SnO2在自旋电子学器件中潜在的应用价值受到了更多的关注。目前为止,理论计算与实验研究都对Fe掺杂后的纳米SnO2的磁性来源给出了一些结论,但是并没有形成统一的认识。为了更加深入的了解Fe掺杂SnO2纳米材料的磁性来源,本申请将通过制备Fe均匀掺杂的、纯相的SnO2纳米颗粒,并利用变温穆斯堡尔谱和X射线吸收精细结构光谱作为主要的研究手段,通过掺杂浓度的改变,揭开Fe原子和Sn原子的超精细状态和磁性结构的变化规律,以及Fe原子配位和晶格内电子结构的变化规律,从而为其磁性来源和电子能带结构的合理解释提供依据。

中文关键词: 穆斯堡尔谱;氧空位;金红石;磁化强度;超精细相互作用

英文摘要: Semiconductors tin dioxide has attracted much attention due to its terrific gas sensitive and optoelectronic properties. Transitional-metal ions doped tin dioxide nanoparticles have good potential applications in spintronics devices. As far as I know, there is no well accepted explanation for the origin of the magnetic properties by both of the theory calculation and experiment results. For this reason, this project will make us have a deep insight into the magnetic origination of iron doped tin dioxide. First, we will prepare the single phase of iron doped tin dioxide by different means, and then utilize the M?ssbauer and X-ray Absorption Fine structure to investigate the hyperfine structure and coordination state of iron and tin in the nanoparticles with increasing the iron content. Finally, combining these data with the magnetic measurement and first principle theory calculation results, we can further understand the reason for the origin of magnetic properties in the diluted magnetic semiconductors.

英文关键词: Mossbauer spectroscopy;Oxygen vacancy;rutile;magnetization;hyperfine interaction

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
66+阅读 · 2021年12月29日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
16+阅读 · 2021年11月18日
【哈佛大学】深度学习理论实证探究
专知会员服务
43+阅读 · 2021年11月1日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
52+阅读 · 2020年12月28日
广东疾控中心《新型冠状病毒感染防护》,65页pdf
专知会员服务
19+阅读 · 2020年1月26日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
71+阅读 · 2019年10月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
46+阅读 · 2021年10月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
【TPAMI2022】双曲深度神经网络研究综述
专知会员服务
66+阅读 · 2021年12月29日
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
16+阅读 · 2021年11月18日
【哈佛大学】深度学习理论实证探究
专知会员服务
43+阅读 · 2021年11月1日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
52+阅读 · 2020年12月28日
广东疾控中心《新型冠状病毒感染防护》,65页pdf
专知会员服务
19+阅读 · 2020年1月26日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
71+阅读 · 2019年10月18日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员