项目名称: 纳米微结构作为荷电粒子束传输元件的研究

项目编号: No.11475075

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 张红强

作者单位: 兰州大学

项目金额: 86万元

中文摘要: 随着纳米技术的发展,纳米尺度上的微结构(如纳米微孔膜,单个纳米微孔,玻璃毛细管,单原子层固体材料)被广泛的使用于荷电粒子束与物质相互作用领域,这些纳米微结构为本领域带来了的前所未有的观察视角,也促使了新物理效应的发现。本项目立足于高电荷态离子与绝缘体微孔膜相互作用中的导向效应,以及最新发现的菱形和矩形纳米微孔对高电荷态离子束斑几何形状的成型效应。在无外接电场和磁场的情况下,直接采用菱形和矩形纳米微孔,以及单个横截面为正方形玻璃管等纳米微结构,研究其对高、低电荷态离子以及电子等荷电粒子束的偏转,聚焦以及成型的物理效应和机制,并探索纳米微结构作为荷电粒子束无场传输元件的可行性和有效性。从而为目前比较受关注的基于简单纳米微结构操控离子束的细胞治疗,操控单个高电荷态离子与表面相互作用产生规则的表面纳米结构等应用提供技术支持。

中文关键词: 高电荷态离子;纳米微结构;成型效应;导向效应;电子束

英文摘要: Due to the rapid development of nanotechnology, various nano structures with various functions are unexpectedly accessed, i.e., nanocapillaries of various cross sections, single nanohole on a membrane, glass capillaries of variuous cross sections and inner shapes, mono-atomic-layer carbon nano-membrane. These nano-structures in materials provide new horizons to study certain physical aspects of charged particle -solid interactions and open up new applications. Our proposal is based on the newly found the guiding and shaping effect of highly charged ion interacting with insulating nanocapillaries. By using various nanostrcutures, we will study the charged particle transportation without the external eletric and magnetci field, i.e, deflecting, focusing and shaping of charged particle beams. This is directly related to producing the submicron-ion beams in the air for cell surgery, as well as the single ion implantation and the ion beam writing by using the nanocapillaries of various geometries as masks.

英文关键词: highly charged ion;nanostructures;shaping effect;guiding effect;electron beam

成为VIP会员查看完整内容
0

相关内容

专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
19+阅读 · 2021年9月14日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
41+阅读 · 2021年3月28日
专知会员服务
31+阅读 · 2021年2月17日
最新《生成式对抗网络GAN逆转》综述论文,22页pdf
专知会员服务
39+阅读 · 2021年1月19日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关VIP内容
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
112+阅读 · 2021年9月22日
专知会员服务
19+阅读 · 2021年9月14日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
41+阅读 · 2021年3月28日
专知会员服务
31+阅读 · 2021年2月17日
最新《生成式对抗网络GAN逆转》综述论文,22页pdf
专知会员服务
39+阅读 · 2021年1月19日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员