项目名称: 固体中强场超快电离动力学的研究

项目编号: No.11304365

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 龚成

作者单位: 中国科学院武汉物理与数学研究所

项目金额: 25万元

中文摘要: 固态介质中的强场电离过程发生在亚飞秒或者阿秒尺度内,它开启了固体中的阿秒动力学过程的研究。然而,最近阿秒科学的进展都集中在气态原子分子中。气态原子分子中的阿秒科学是基于探测电子、离子和高次谐波,这些探测手段在固体中不再适用,需要探寻新的测量手段。在本项目中,我们提出用谱干涉和泵浦探测方案研究固体中的超快电离动力学过程。由于固体中电离过程影响在其中传播的光束的性质,如折射率,吸收等,通过测量载波包络相位稳定的周期量级激光脉冲在固体中成丝过程产生的超连续谱的相位变化,可以提取亚光学周期的电离动力学信息。将该研究推广到晶体中和电介质的表面,分别研究晶体的结构对电离过程的影响和电介质中的金属化过程。通过本项目的研究可以更深入地理解固体中的电离过程,在更短的时间尺度内研究固体内部的动力学过程。

中文关键词: 强场电离;泵浦探测;光丝;X波;

英文摘要: Ionization processes in solids unfold on sub-femtosecond or attosecond timescale, which provides an opportunity to investigate the attosecond dynamics in solids. Despite this, the recent major advances in attosecond science are based on atoms and molecules in gas phase. The metrology applied in attosecond science in gases are based on detecting electrons, ions and high harmonic, which can not be used inside solids, so new metrology is required. In this study, we utilize a pump-probe and spectral interference scheme to study the ultrafast ionization dynamics, for the property of laser beam propagating through the solids has been modified, such as refractivity and absorption. We measure the phase variation of the supercontinuum, which is generated during few-cycle laser pulses with stabilized carrier-envelope phase filament in solid. Thus the sub-cycle ionization dynamics can be obtained. The scheme is generalized to crystal and surface of dielectric to study the effect of crystal structure on ionization and the metallization of dielectric, respectively. This study can give new insights into the ionization processes in solids and investigate the ionization dynamics in solids in a much shorter time scale.

英文关键词: strong field ionization;pump-probe;filamentation;X-wave;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
103+阅读 · 2021年8月23日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
15+阅读 · 2019年6月25日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
12+阅读 · 2018年1月28日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
相关论文
微信扫码咨询专知VIP会员