项目名称: 内河AIS数据可靠性与修复研究
项目编号: No.61273234
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 初秀民
作者单位: 武汉理工大学
项目金额: 72万元
中文摘要: 实时船舶交通信息是构建智能航运系统的关键,船舶自动识别系统(AIS)是获取内河船舶交通信息重要手段。针对AIS数据传输存在不确定性,研究AIS数据可靠性模型以及数据修复方法,对于获取完备的船舶交通信息具有重要意义。 本项目首先采用DSmT方法甄别AIS错误数据,并利用统计分析的方法大范围评估区域性的AIS数据掉包特征,进而逆推场强分布,同时采用偏微分方法描述各参数的特征,针对不同地理特征、天气、干扰,建立AIS信号衰减计算模型。然后根据船舶运动规律对数据进行修复,并建立高阶Markov修复模型,寻求近似简化算法,在保证修复精度的条件下有效降低算法复杂度。最后利用AIS信号点-面场强预测模型,描述大范围的平原、山区、城区、干扰源、天气因素下的AIS信号场强分布状况,建立基于地理信息系统的仿真环境,进而评估不同布设原则下的最佳AIS基站布设点。
中文关键词: 船舶自动识别系统;场强预测;数据可靠性评估;轨迹还原;数据链路评估
英文摘要: Real-time shipping traffic information is an essential part of the intelligent shipping system, which would be acquired by AIS (automatic identification system) normally. Due to the indeterminacy of AIS data transmission, it is necessary to study the reliability of AIS system, find a way to restore the data link, which would be great improvement on the inland maritime information administration. The application would take the DSmT method to filter the origin AIS data, which probably contain the GNSS and Static information errors. With the data pretreated, we do the statistics about the PER of AIS data link, further more, do the filed strength calculation over different distance, geography, interference, set up the prediction model for the AIS data transmitting. Meanwhile, for repairing the missing data, the application would adopt the high order Markov algorithm to create a model to restore the messages which are lost in the AIS link by using the motion characteristics of the vessels, and keep the model as simple as possible by the limit of the accuracy we need. Eventually, the application would set up the point to area field strength prediction model, describing large area which is plain, upland, urban, and different interference and weather. With the help of the model, it would build a simulation environment
英文关键词: Automatic Identification System;field strength predication;data availability evaluation;trajectory restoration;data-link evaluation