项目名称: Si基增益损耗型时空对称性超材料新物理效应的研究
项目编号: No.11474158
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 卢明辉
作者单位: 南京大学
项目金额: 92万元
中文摘要: 以光子晶体、超材料为代表的人工微结构光电功能材料已在许多领域实现了对光波的有效调控,推动了光子集成器件的发展。区别于传统人工材料主要研究有效折射率的实部对光散射的影响,本申请重点关注折射率的虚部(材料的损耗以及增益)所产生的奇异光学效应。1.通过复空间折射率的设计,研究新型时空对称复合材料,设计出性能更理想的相干完美吸收体,深入研究完美相干吸收的物理机制,设计出完美吸收器件,为新一代光伏和光电探器件提供研究基础。2.在已经初步掌握设计并实验上实现相干完美吸收的基础上,进一步考虑新型激光器的设计,如PT对称的激光器,并且利用磁控溅射等实验手段实现之。总之,通过对整个折射率复空间的设计和调控,不仅可以模拟开放量子系统诸如量子相变的基本问题,还可实现诸如光的单向传输、完美相干吸收等新奇物理效应,最终可为下一代集成光子器件提供新原理和新方法。
中文关键词: 时空对称性;超材料;光子晶体;微纳光子学;增益/损耗材料
英文摘要: Artificial micro-structural optoelectronic functional materials such as photonic crystals and metamaterials have been shown to be capable of manipulating optical wave properties in an unconventional way, and thus their development greatly facilitates photonic-integration in many fields. Unlike all the previous works which focus on the impact of the effective refractive index's real part on the scattering of the light, here our project emphasizes the impact coming from the imaginary part of the refractive index, i.e, material's loss or gain and its resulted novel optical phenomena. Our goal is to design a perfect absorber with better performance and/or more functionality by investigating a new kind of parity-time multilayer material system with a complex refractive index. We will study the physical mechanism for plasmonic lasers and coherent perfect absorbers and combine them to design a novel coherent perfect absorber, which might be useful for the design of new generation high efficient photovoltaic and detector devices. In addition, based on our previous work, we will continue to investigate new physics effects in a Non-Hermitian open quantum system with both broken parity symmetry and time-reversal symmetry, demonstrate theoretically and experimentally the asymmetric transmission of light with different states of polarization, and improve the platform for parity-time symmetry research. In short, manipulating the refractive index in the complex plane give rise to many research opportunities such as critical quantum phase transition in open quantum system, optical one-way transportation, perfect coherent absorbers, coherent amplification, non-reciprocal Raman amplification, and non-reciprocal lasing, which could ultimately underpin a new generation of sophisticated, integrated photonic devices.
英文关键词: Parity-Time Symmetry;metamaterials;Photonic Crystals;Nano-optics;Gain/Loss Materials