项目名称: 油菜中一个MYB转录因子调控ROS累积与抗逆的分子机制研究

项目编号: No.31501338

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 食品科学、农学基础与作物学

项目作者: 韩锋

作者单位: 西北农林科技大学

项目金额: 20万元

中文摘要: 油菜是一种广泛种植的重要的油料作物,其生长发育及产量都会受到逆境的影响。在植物对逆境的响应中,转录因子起着重要的作用。MYB类转录因子是植物中最大的转录因子家族之一,其中一些参与了植物对逆境的响应。在前期研究中,我们从油菜中鉴定了一个能够引起活性氧(ROS)积累与细胞坏死的MYB类转录因子基因。过多活性氧会导致植物细胞受到氧化损伤,而在适当的浓度下又能通过充当第二信使,引起细胞程序性死亡等方式参与植物抗逆。本项目拟采用基因芯片和染色体免疫共沉淀-定量PCR技术鉴定该转录因子所直接转录激活的基因,并结合相关的生理和生化实验,阐明其调控活性氧累积与抗逆的分子机制。本研究有助于人们深入了解油菜MYB类转录因子在响应逆境中的调控机制,并为油菜高抗性品种的育种提供理论基础。

中文关键词: 油菜;抗逆;MYB转录因子;活性氧

英文摘要: Canola is a widely planted oilseed crop. Its growth, development and production are affected by stresses. Transcription factors in plants play important role in response to stress. The MYB (v-myb avian myeloblastosis viral oncogene homolog) family is one of the biggest families of transcription factors in plants. Some MYB factors participate in plant response to stress. In our recent research, we obtained a MYB transcription factor gene from canola, whose expression can lead to reactive oxygen species (ROS) accumulation and cell death. Excessive ROS can lead to cell damage of plants, and ROS is involved in plant response to stress in proper concentration by acting as second messenger or leading to programmed cell death. This proposal will identify the genes transcriptionally activated directly by the above-mentioned transcription factor with microarray and chromatin immunoprecipitation (ChIP)-quantitative PCR. Combined with physiological and biochemical analysis, the regulatory mechanism of the transcription factor in ROS accumulation and stress resistance will be clarified. This research will help to deepen the understanding of the regulation mechanism of MYB transcription factor of canola response to stress, and provides a theoretical support to cultivate high resistant canola varieties.

英文关键词: Canola;Stress-resistance;MYB transcription factor;ROS

成为VIP会员查看完整内容
0

相关内容

芬兰国防大学《军事情报分析:制度影响》,86页pdf
专知会员服务
33+阅读 · 2022年3月28日
【CVPR2022】基于样例查询机制的在线动作检测
专知会员服务
9+阅读 · 2022年3月23日
【CVPR2022】MSDN: 零样本学习的互语义蒸馏网络
专知会员服务
20+阅读 · 2022年3月8日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
专知会员服务
15+阅读 · 2021年6月4日
人工智能预测RNA和DNA结合位点,以加速药物发现
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
15+阅读 · 2021年2月19日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员