项目名称: 超离子导体Cu2-xS系列化合物的组成与微结构调控及其热电性能增强机理研究

项目编号: No.51272023

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 张波萍

作者单位: 北京科技大学

项目金额: 80万元

中文摘要: 超离子导体硫化铜(Cu2-xS,0≤x≤1)系列化合物的电导率高,对应x值从1变化到0具有可控的禁带宽度,有望成为环境友好、性能优异的低成本热电材料。本研究拟采用机械合金化和水热法合成化学计量比与形貌可控的硫化铜纳米粉体,采用放电等离子烧结技术制备块体热电材料。系统研究硫化铜系列化合物的化学计量比组成与相结构的可控制备工艺,揭示其反应过程及合成机理;阐明元素掺杂、化学成分和微结构调控对超离子硫化铜导体的禁带宽度以及热电性能的影响规律,重点通过协调声子与载流子的输运与散射特性,在提高Seebeck系数的同时降低热导率,揭示超离子导电材料高电导和低热导共存的微观机理以及电热输运机制,为进一步提高硫化铜体系热电性能和寻找新的热电体系提供理论依据。

中文关键词: Cu2-xS;热电性能;元素掺杂;纳米复合;

英文摘要: A series of superionic conductor copper sulfide (Cu2-xS,0≤x≤1 ) compounds is an important p-type semiconductor which has high conductivity and controllable band gap corresponding to the x value from 0 to 1. It is expected to be a promising thermoelectric (TE) material with a low cost, environmental friendly and high performance. In this work, copper sulfide powders will be fabricated by mechanical alloying and hydrothermal synthesis, and then sintered to bulks by spark plasma sintering technique. The preparation process of copper sulfide compounds with controllable stoichiometric component and structure will be investigated. The reaction and synthetic mechanism will be revealed. In order to improve the Seebeck coefficient and reduce thermal conductivity, the effects of component, doping and microstructure on the band gap and TE properties of superionic conductor copper sulfide will be investigated with a special emphasis on the transport and scattering characters of carrier and phonon. A theory basis will be provided for enhancing the TE performance of copper sulfide compounds and new TE materials.

英文关键词: Cu2-xS;thermoelectric property;element doping;nanocompositing;

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
专知会员服务
28+阅读 · 2020年10月9日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Knowledge Representation Learning: A Quantitative Review
小贴士
相关主题
相关VIP内容
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
专知会员服务
28+阅读 · 2020年10月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员