项目名称: 高深宽比纳米结构的可控毛细力自组装机理与应用研究
项目编号: No.61504001
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 无线电电子学、电信技术
项目作者: 魏淑华
作者单位: 北方工业大学
项目金额: 21万元
中文摘要: 毛细力是纳米尺度下极其重要的作用力,已成为制约高深宽比纳米结构可靠制备的主要因素,同时毛细力也是纳米尺度下自组装的最有效驱动力。本项目从研究高深宽比纳米结构力学稳定性出发,通过系统研究纳米尺度毛细力自组装作用机理,阐明影响纳米结构力学稳定性的物理和工艺因素,为解决该尺度下毛细力引起的高深宽比纳米结构坍塌问题提供理论和实验依据;另一方面为实现毛细力的可控自组装提供重要的理论和技术保障,进而提供一种新型有效的纳米加工方式。研究内容包括:(1)毛细力自组装的作用机理研究。通过模拟仿真及原位动态过程分析,研究自组装过程作用机理,揭示各影响因素的影响效能及相互制约关系。(2)可控毛细力自组装的设计开发。对影响因素进行有效设计利用,开发用于可控设计的软件程序,实现可控毛细力自组装。(3)毛细力自组装应用研究。结合高分辨电子束曝光,对高深宽比纳米结构进行可控自组装,实现特定功能纳米器件的加工制备。
中文关键词: 纳米加工;电子束光刻;高深宽比纳米结构;自组装;毛细力
英文摘要: The capillary-force which is an extremely important force in the small objects is considered to be a pivotal factor of restricting the reliable fabrication of high-aspet-ratio nanostructures. Meanwhile, capillary-force is the most effective and important driving force of the nanoscale self-assembly. The main purpose of this project is to research the mechanical stability of high-aspet-ratio nanostructures. This project will study nanoscale capillary-force self-assembly behavior systematically and set up its physical model, clarify the physical and process factors which affect the stability of nanostructures, then provide theoretical and experimental basis with which to solve the collapse of the high-aspet-ratio nanostructures. In addition, this research will provide theoretical and technical support to achieve controllable capillary-force self-assembly, then provide a effective nanofabrication method. The main research plans include:(1) Mechanism research of capillary-force self-assembly. We will analysis the impact factors of nanostructures suffered by capillary-force by simulations and in situ dynamic process research, to establish the physical model. (2) Algorithm research of controllable capillary-force self-assembly. We will develop robust algorithm based on the theoretical study, analysis the relationship of capillary-force of individual nanostructure and the overall structure, to achieve the programmable capillary-force self-assembly. (3) Application research of controllable capillary-force self-assembly. We will design and fabricate the high-aspect-ratio nanostructures by high-resolution electron-beam lithography, then to fabricate nanodevices with specific functions by using controllable capillary-force self-assembly.
英文关键词: Nanofabrication;Electron-beam lithography;High-aspect-ratio Nanostructures;Self-assembly;Capillary-force