项目名称: 异质结薄膜中的电控磁效应及相关机理研究

项目编号: No.51202125

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 宋成

作者单位: 清华大学

项目金额: 25万元

中文摘要: 数据存储和读出器件的发展是推动信息工业进步的关键。电控磁效应具有低功耗、高速度、非易失性、与半导体集成电路兼容等优点,是一种很有应用前景的信息存储模式。已有研究表明电场可以改变磁性薄膜的矫顽力、居里温度和磁各向异性。但是,电控磁的调控机制尚不明确,同时较低的调控效率将限制相关器件的实际应用。本项目拟通过在栅极/磁性材料(包括氧化物、半导体和金属)组成的异质结薄膜中实现门电压对磁传输性能的调控,在以稀磁氧化物为介质层的阻变存储器件中研究电阻和磁化的二元协同变化,以及在铁电体/磁性材料体系中进行铁电极化翻转对磁化和磁电阻的循环操纵,深入分析电控磁效应与材料电子结构、界面对称性、薄膜的磁性来源之间的关系,阐明电场效应调控薄膜材料磁学性能的机制,为构造高调控效率的电控磁器件,以及发展同时利用电(电荷)和磁(自旋)性能实现存储和读出功能于一体的自旋器件提供科学依据。

中文关键词: 电控磁;自旋电子学;异质结;电控轨道;离子液体

英文摘要: The improvement of the devices for recording and read head is a key for the development of information industry. Electrical control of ferromagnetism is a promising data storage method with a lot of advantages, such as high speed, low power consumption, nonvolatile operation and the compatibility with semiconductor integrated circuits. The present research results show that the coercive field, Curie temperature, and magnetic anisotropy of magnetic films could be modified by a gate voltage. However, the practical application of the devices based on electrical control of ferromagnetism would be limited by the low modulation efficiency, especially corresponding intrinsic mechanisms, at the heart of applicative interest, remains to be clarified. Three main research contents will be included in this project: First, the magnetotransport properties controlled by a gate voltage will be studied in gate electrode/magnetic materials (such as oxides, semiconductors and metals) based heterostructured films. Second, a simultaneous behavior of resistive switching and magnetic transition will be explored in the resistive random access memory with storage medium composed by diluted magnetic oxides. Third, the magnetization and magnetoresistance will be reversibly modulated by ferroelectric polarization in ferroelectric/magnetic

英文关键词: Electrical control of magnetism;Spintronics;Heterostructure;Electrical control of orbits;Ionic liquid

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
数据中心传感器技术应用 白皮书
专知会员服务
40+阅读 · 2021年11月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
142+阅读 · 2021年2月3日
专知会员服务
18+阅读 · 2020年12月23日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
33+阅读 · 2018年7月14日
医学知识图谱构建技术与研究进展
人工智能学家
17+阅读 · 2017年11月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
数据中心传感器技术应用 白皮书
专知会员服务
40+阅读 · 2021年11月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
142+阅读 · 2021年2月3日
专知会员服务
18+阅读 · 2020年12月23日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
相关资讯
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
33+阅读 · 2018年7月14日
医学知识图谱构建技术与研究进展
人工智能学家
17+阅读 · 2017年11月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员