项目名称: 复杂环境载荷下机场中线灯灯体损伤机理和失效评价研究
项目编号: No.U1533134
项目类型: 联合基金项目
立项/批准年度: 2016
项目学科: 无线电电子学、电信技术
项目作者: 牛莉莎
作者单位: 清华大学
项目金额: 38万元
中文摘要: 民用机场中线灯长期工作在室外严苛环境中,承受着飞机轮胎的反复碾压和冲击。日益频繁的航班起降已经开始造成中线灯灯体断裂。研究复杂载荷和环境下的灯体材料失效行为,改进和优化灯体结构设计,对于延长中线灯的使用寿命具有重要的理论意义和工程价值。针对不同类型的中线灯灯体材料,开展理化性能测试以及不同温度下的拉伸、断裂和疲劳试验,揭示微结构和温度对灯体材料断裂和疲劳性能的影响机理,阐明中线灯细观和宏观损伤的生成和演化规律,给出在服役环境和复杂载荷作用下微裂纹萌生和发展的定量描述。通过有限元数值模拟实际灯体几何尺寸以及载荷和环境,分析复杂载荷条件和环境下中线灯灯体关键部位的受力状态,并根据数值计算结果改进和优化灯体结构设计。为完善我国中线灯灯体材料标准和提高中线灯的结构服役寿命提供理论基础。
中文关键词: 机场中线灯;损伤失效;断裂与疲劳;结构优化
英文摘要: Runway and taxiway centerline lights of civil airports operate in inclement outdoor environment. They are subjected to the repeating rolling compactions and impacts from aircraft tires. Fracture of centerline lights occurs frequently with the increasing flights. Therefore, research on investigating the failure behavior of centerline light materials under complex loading conditions and environment and optimizing the structural design of the light body will help to extend the service life of centerline lights both theoretically and practically. For different types of materials used in centerline lights, the physicochemical properties will be studied and tensile, fracture and fatigue tests at various temperatures will be conducted, which will contribute to revealing the mechanism of microstructure and temperature effect on the fatigue and fracture behavior of light body materials, clarifying the initiation and evolution of the micro and macro damage and building quantitative description of the micro crack initiation and evolution under operation environment and complex loading condition. In addition, a finite element (FE) model with full-scale light body will be established to analyze the stress field of key regions under complex loading conditions and environment. With the results of FE analysis, the structural design of the light body will be optimized. This project will improve the service life of centerline lights and provide the guidance for material standards of centerline lights in China.
英文关键词: airport centerline light;damage failure;fracture and fatigue;structural optimization