项目名称: 发展和优化19F双量子偶极耦合脉冲序列及结合非天然氨基酸实现原位条件下蛋白质19F-19F距离测量
项目编号: No.U1332138
项目类型: 联合基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 田长麟
作者单位: 中国科学技术大学
项目金额: 78万元
中文摘要: 19F是一类高自然丰度、高旋磁比的1/2核自旋,我们过去的工作中发展了基于非天然氨基酸的19F定点标记和核磁共振的蛋白质结构和动力学分析。为了实现原位条件下蛋白质的动态结构变化和蛋白质相互作用研究,需要进一步发展高场高转速条件下19F-19F准确距离测量方法。 本项目将基于对称性同核偶极重耦合理论,应用平均哈密尔顿方法模拟多种自旋相互作用,有效排除对19F距离测量的不利因素(包括19F化学位移各向异性,1H-19F偶极耦合,19F化学位移变化等),获得19F双量子偶极耦合脉冲序列;进一步应用SIMPSON等模拟软件确认所选择的脉冲序列,优化超循环、相位及去耦条件,获得可靠的19F-19F准确距离测量的脉冲序列。同时发展蛋白质双位点或双蛋白质单点19F标记方法,在强磁场中心高场固体核磁共振和高速魔角旋转探头的支持下实现原位条件下19F-19F距离测量和蛋白质结构变化和相互作用分析。
中文关键词: 非天然氨基酸;双标记;偶极耦合与距离测量;蛋白质相互作用;蛋白质动态构象变化
英文摘要: 19F is a 1/2 spin with 100% natural abundance and high gyromagnetic constant. In the passed years of studies, we have developed unnatural amino acid based 19F site-specific labeling and protein structure and dynamics analysis using nuclear magnetic resonance. To implement in situ protein dynamic conformation change and protein-protein interaction studies, accurate distance estimation between 19F-19F will be very important and necessary. In this proposal, we will start from symmetry-based recoupling theory, select the best 19F-19F dipolar coupling double quantum methods, with exclusions of the unwanted or destructive interactions (19F chemical shift anisotropy, 1H-19F dipolar coupling and 19F chemical shift offsets) using Average Hamiltonian Theory (AHT) and its exclusion rules. Then, SIMPSON software will be applied to simulate the double quantum evolution. The double quantum filter efficiency estimations of different methods were applied to select the best double quantum methods, then to optimize the methods with implementation of supercycle, phase adjustment and dipolar coupling schemes. At the same time, new methods of double site specific 19F incorporation or double proteins with singly 19F incorporation are under development to achieve 19F-19F accurate distance measurement for protein conformation change a
英文关键词: unnatural amino acids;double labeling;dipolar coupling and distance derivation;protein-protein interaction;protein dynamic conformation changes