项目名称: 过掺杂补偿缺陷与异质结能级对纳米ZnO气敏特性调节机制的研究

项目编号: No.51272253

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 武晓峰

作者单位: 中国科学院过程工程研究所

项目金额: 80万元

中文摘要: 现有化学气敏传感器的物理机制(D-2L模型)局限于MOS本征或替代式离子掺杂的缺陷态与气敏特性的关联,尚未有效地解决过掺杂及异质结构对MOS气敏性能的作用机制问题。本项目以纳米ZnO为对象,以过掺杂、异质结效应与ZnO薄膜电学性质的关系及两者之间的协同性为切入点,分别考察离子过掺杂ZnO的缺陷类型、浓度与薄膜电学性质、气敏特性的关系,确定过掺杂对纳米ZnO气固界面电子耗散层厚度的控制规律,建立ZnO薄膜的补偿缺陷类型及浓度-电学性质-气敏性能之间的内在关联;通过材料结构设计,分别考察不同类型核/壳型ZnO异质结的能级结构与薄膜电学性质、气敏性能之间的关系,确定异质结的能级结构对本体ZnO的电子耗散层厚度的控制规律以及与薄膜气敏性能之间的内在关联性。在上述基础上,形成更为系统的ZnO基气敏传感器的气敏性能调节机制模型。

中文关键词: 离子过掺杂;异质界面;纳米ZnO;气敏性能;

英文摘要: The developed physical model,also D-2L model, to elucidate the interactive mechanism of chemical gas-sending devices is limited to corralate the MOS intrinsic defects and/or the compensating defects by substitutive ion-doping to the MOS gas-sensing performance, and still inefficient to solve and prodict the case dominated by ion-overdoping defects and the hetero-interface energy-levels .Choosing nano-ZnO as objective, and the relatiionship of the ion-overdoping, hetero-junction and conductivity of MOS thin films and their interactive synergicity, as pointcut, this present project strives to elaborate the compensating defect-dependent electronic depletion layer thickness, by systematically investigating the influences of compensating types and carrier concentration on the ZnO conductivity and the corresponding gas-sensing performance. Furthermore, it is to found out the underlying relationship of defect- electronic-gas sensing properties of MOS film, especially nano-ZnO. As more important and indispensible part, the present project is also to uncover the interface energy-level-determined electronic depletion layer by designing core-shell hetero-structured ZnO based nanoparticles as sensing elements and carfully investigating the conductivity and the related gas-sensing propertis of various hetero-structured core-

英文关键词: Ion-overdoping;heterogeneous interface;nano-ZnO;gas-sensing;

成为VIP会员查看完整内容
0

相关内容

基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
50+阅读 · 2021年10月16日
逆优化: 理论与应用
专知会员服务
35+阅读 · 2021年9月13日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
11+阅读 · 2021年7月16日
专知会员服务
43+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月7日
Arxiv
28+阅读 · 2021年9月18日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
50+阅读 · 2021年10月16日
逆优化: 理论与应用
专知会员服务
35+阅读 · 2021年9月13日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
11+阅读 · 2021年7月16日
专知会员服务
43+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员