项目名称: 基于领域知识的矿山灾害感知数据时空演变过程的聚类模型及应用

项目编号: No.41271445

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 天文学、地球科学

项目作者: 闫志刚

作者单位: 中国矿业大学

项目金额: 75万元

中文摘要: 矿山灾害感知数据是各类灾害过程实时的、客观的记录,科学分析感知数据的演变过程,通过聚类分析,从海量灾害感知数据中识别出有价值的灾害记录片断,对灾害防治具有重要意义。现有聚类模型无法表达数据演变过程的动态特征,也缺乏对演变过程相似性度量的方法,难以实现过程聚类。针对矿山灾害感知数据的特点和处理的实际要求,利用矿山灾害认知的领域知识来指导灾害感知数据演变过程的聚类分析,对原始感知数据进行数据约简、模式转换与特征提取,确定感知数据演变过程的关键事件和标识性特征,按照时间序列构建数据演变过程多层次、多尺度的特征链,分割灾害感知数据序列,研究序列的相似性度量方法,综合研究适用的聚类模型,形成灾害感知数据演变过程聚类分析的理论与技术体系。通过聚类后的灾害簇,分析矿山灾害的时、空演变规律,优化特征链,实现灾害过程的智能识别与自动、半自动检索。开发矿山灾害实时监测与预警系统,直接服务于矿山安全生产。

中文关键词: 聚类;时空分析;特征提取;灾害感知;预测模型

英文摘要: The perception data of mining disasters is real-time and objective recording during various mining disasters. Analyzing the evolution process of the perception data scientifically and identifying valuable fragments of disaster recordings from massive perception data by clustering method is very significant for disaster prevention. The current clustering models can't present the dynamic characteristics of the evolution process of perception data and lack the methods for measuring the similarity of evolution process; thus inapplicable for the process clustering. According to the characteristics of the perception data of mining disasters and the actual requirements for data processing, the proposed research will use the domain knowledge for cognizing mining disasters to guide the clustering analysis of evolution processes of disaster perception data, performing data reduction, mode conversion and feature extraction which on the original perception data. It then identifies key events and characteristic features of the evolution process of the disaster perception data, builds the multi-level and multi-scale feature chains of perception data evolution process in time-series, divides the perception data of disasters into segments, measures the similarity among the segments, studies the applicable clustering models for

英文关键词: Clustering;Spatiotemporal analysis;Feature extraction;Disaster perception;Prediction model

成为VIP会员查看完整内容
0

相关内容

顾及时空特征的地理知识图谱构建方法
专知会员服务
53+阅读 · 2022年2月15日
城市数字孪生标准化白皮书(2022版)
专知会员服务
173+阅读 · 2022年1月12日
【WWW2021】面向时空图预测的神经结构搜索
专知会员服务
22+阅读 · 2021年4月23日
专知会员服务
72+阅读 · 2021年4月8日
专知会员服务
53+阅读 · 2021年4月3日
专知会员服务
77+阅读 · 2021年3月20日
专知会员服务
51+阅读 · 2020年12月19日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
52+阅读 · 2020年12月1日
专知会员服务
49+阅读 · 2020年8月27日
【神经语言生成:形式化,方法与评价,70页pdf】
专知会员服务
35+阅读 · 2020年8月8日
【WWW2021】面向时空图预测的神经结构搜索
「时空数据分析」综述论文,44页pdf
专知
9+阅读 · 2021年3月20日
【Flink】基于 Flink 的流式数据实时去重
AINLP
14+阅读 · 2020年9月29日
基于虚拟现实环境的深度学习模型构建
MOOC
24+阅读 · 2019年9月28日
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
干货 :基于用户画像的聚类分析
数据分析
22+阅读 · 2018年5月17日
【入门】数据分析六部曲
36大数据
18+阅读 · 2017年12月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Antipatterns in Software Classification Taxonomies
Arxiv
0+阅读 · 2022年4月19日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
10+阅读 · 2021年2月18日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
29+阅读 · 2018年4月6日
小贴士
相关VIP内容
顾及时空特征的地理知识图谱构建方法
专知会员服务
53+阅读 · 2022年2月15日
城市数字孪生标准化白皮书(2022版)
专知会员服务
173+阅读 · 2022年1月12日
【WWW2021】面向时空图预测的神经结构搜索
专知会员服务
22+阅读 · 2021年4月23日
专知会员服务
72+阅读 · 2021年4月8日
专知会员服务
53+阅读 · 2021年4月3日
专知会员服务
77+阅读 · 2021年3月20日
专知会员服务
51+阅读 · 2020年12月19日
【WSDM2021】基于演化状态图的时间序列事件预测
专知会员服务
52+阅读 · 2020年12月1日
专知会员服务
49+阅读 · 2020年8月27日
【神经语言生成:形式化,方法与评价,70页pdf】
专知会员服务
35+阅读 · 2020年8月8日
相关资讯
【WWW2021】面向时空图预测的神经结构搜索
「时空数据分析」综述论文,44页pdf
专知
9+阅读 · 2021年3月20日
【Flink】基于 Flink 的流式数据实时去重
AINLP
14+阅读 · 2020年9月29日
基于虚拟现实环境的深度学习模型构建
MOOC
24+阅读 · 2019年9月28日
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
干货 :基于用户画像的聚类分析
数据分析
22+阅读 · 2018年5月17日
【入门】数据分析六部曲
36大数据
18+阅读 · 2017年12月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
相关论文
Antipatterns in Software Classification Taxonomies
Arxiv
0+阅读 · 2022年4月19日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
10+阅读 · 2021年2月18日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
29+阅读 · 2018年4月6日
微信扫码咨询专知VIP会员