项目名称: 基于过程监测的大尺寸晶圆全局平坦化机理研究

项目编号: No.51305227

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 机械、仪表工业

项目作者: 赵德文

作者单位: 清华大学

项目金额: 26万元

中文摘要: 随着半导体行业晶圆尺寸增大至300mm/450mm,晶圆化学机械平坦化(CMP)效果成为影响集成电路产品良率的一个关键因素。只有通过工艺过程的精确控制才能提高平坦化后的平整度,这就要求对平坦化过程和机理有一个清晰的认识。然而遗憾的是CMP领域对平坦化机理的认识远远滞后于技术的发展,传统的理论分析与模型仿真与实际情况相差甚远。本项目着眼于通过直接实时监测CMP过程"晶圆-抛光液-抛光垫"抛光主体间的作用状态,研究实际工况下大尺寸晶圆平坦化机理。利用自主研发的300mm铜互连CMP过程监测系统,监测CMP过程抛光主体间的润滑与接触状态,研究CMP过程流体压力的形成机理及其对接触压力的影响规律,从而建立抛光主体的作用模型,揭示主要工艺参数对抛光效果的影响机制。采用这种新的研究策略,有望建立更贴合实际的CMP机理与模型,为CMP工艺优化提供指导,促进大尺寸晶圆CMP机理的认识与技术水平的提升。

中文关键词: 化学机械抛光;流体压力;润滑机理;过程监测;

英文摘要: As the wafer size increases to 300mm/450mm in the semiconductor industry, the result of chemical mechanical planarization (CMP) becomes one of the major factors in affecting the yield of the IC products. Only precise process control can improve the uniformity after planarization, which demands a clear understanding of the process and mechanism of the planarization. Unfortunately, the mechanism study lags far behind the technical development. This project aims at the studies on the mechanism of large size wafer planarization in real condition, by direct in-situ monitoring the interactions between the "wafer-slurry-pad" polishing main body. Using the self-developed process monitoring system in our 300mm copper interconnect CMP equipment, the lubrication and contact status of polishing main body can be monitored, the mechanism of the fluid pressure and its effect on the contact stress will be studied. Further, the interaction model of the polishing main body will be constructed, and the impacting mechanism of the process parameters on the planarization results will be revealed. Using this novel research strategy, it is expected to establish a CMP mechanism and model fit for actual condition, to provide guidance for the process optimization, and to put forward the mechanism understanding and technique improvement to

英文关键词: Chemical Mechanical Polishing;Fluid pressure;Lubricating mechanism;Process monitoring;

成为VIP会员查看完整内容
0

相关内容

智能无人集群系统发展白皮书
专知会员服务
300+阅读 · 2021年12月20日
专知会员服务
22+阅读 · 2021年8月23日
数字化转型白皮书:数智技术驱动智能制造,42页pdf
专知会员服务
175+阅读 · 2021年7月8日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
38+阅读 · 2021年5月9日
2021年中国人工智能在工业领域的应用研究报告(附报告)
一张图看懂2021苹果十月发布会
威锋网
0+阅读 · 2021年10月18日
Apple Watch Series 7采用S7芯片 CPU与上代相同
威锋网
0+阅读 · 2021年9月18日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关主题
相关资讯
一张图看懂2021苹果十月发布会
威锋网
0+阅读 · 2021年10月18日
Apple Watch Series 7采用S7芯片 CPU与上代相同
威锋网
0+阅读 · 2021年9月18日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员