项目名称: 熟料质量稳健检测中的关键技术与并行实现方法研究

项目编号: No.61203016

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 陈华

作者单位: 湖南大学

项目金额: 26万元

中文摘要: 烧结工艺在诸如水泥、氧化铝等生产领域应用广泛,一直存在高能耗,粗放生产等问题,是节能减排工作的重点。其中熟料质量是各类烧结过程实现最优控制和节能降耗的关键工艺检测参数,但国内外均少有熟料质量的在线检测方法研究。 课题结合典型的工业回转窑烧结实例,在课题组前期研究基础上,针对现场熟料图像受光照、粉尘干扰较大,特征不稳定,现有分类检测稳健性不强的实际问题,研究熟料质量稳健检测中的关键鲁棒技术和快速并行实现方法。首先研究一种基于压缩感知的稳健视频纹理特征提取方法;其次研究利用稳健估计理论对ELM进行改进,结合视频纹理特征和窑前热工数据,对熟料质量进行鲁棒的融合检测;最后研究建立一套基于CUDA并行环境下的熟料质量机器视觉稳健检测系统。上述研究内容对于辨识烧结过程工况、优化控制参数、实现更加稳定高效的烧结过程控制具有重要的现实意义,同时对提升其他工业软测量系统的鲁棒性也有重要借鉴意义。

中文关键词: 回转窑;烧结过程;熟料检测;图像特征提取;并行计算

英文摘要: Sintering process is widely used in cement, alumina production areas, but its high energy consumption and extensive production is the main works of energy conservation and emission reduction. Especially the clinker quality is the key parameter to achieve optimal control and reduce consumption in sintering process, but the on-line measurement methods are rarely mentioned both at home and abroad. Based on the earlier research, aimed to the fuzzy image sequence interfered by lightness and dust, this project researches the steady measurement technology and fast parallel implement method for clinker quality. Firstly, CS (Compressive Sensing) is used to extract steady features of clinker sintering image sequence. Secondly, ELM (Extreme Learning Machine) combined with robust estimation theory is researched for the robust fusion measurement. At last, the steady machine vision measurement system of clinker sintering will be built in the CUDA parallel environment. The research is not only very important for optimization of sintering process, but also has significant reference for other robust soft computing measurement with industrial images.

英文关键词: rotary kiln;the process of sintering;clinker quality detection;image feature extraction;parallel computing

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
智能视频监控关键技术:行人再识别研究综述
专知会员服务
38+阅读 · 2021年12月30日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
18+阅读 · 2020年12月23日
专知会员服务
103+阅读 · 2020年11月27日
工业人工智能的关键技术及其在预测性维护中的应用现状
多源数据行人重识别研究综述
专知会员服务
40+阅读 · 2020年11月2日
深度学习目标检测方法综述
专知会员服务
273+阅读 · 2020年8月1日
杨宇鸿:腾讯多模态内容理解技术及应用
专知
3+阅读 · 2022年1月27日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
基于知识图谱的问答系统
PaperWeekly
21+阅读 · 2021年2月8日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
侦测欺诈交易(异常点检测)
GBASE数据工程部数据团队
19+阅读 · 2017年5月10日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
33+阅读 · 2021年12月31日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
27+阅读 · 2020年12月24日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
136+阅读 · 2018年10月8日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
智能视频监控关键技术:行人再识别研究综述
专知会员服务
38+阅读 · 2021年12月30日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
109+阅读 · 2021年4月7日
专知会员服务
18+阅读 · 2020年12月23日
专知会员服务
103+阅读 · 2020年11月27日
工业人工智能的关键技术及其在预测性维护中的应用现状
多源数据行人重识别研究综述
专知会员服务
40+阅读 · 2020年11月2日
深度学习目标检测方法综述
专知会员服务
273+阅读 · 2020年8月1日
相关资讯
杨宇鸿:腾讯多模态内容理解技术及应用
专知
3+阅读 · 2022年1月27日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
基于知识图谱的问答系统
PaperWeekly
21+阅读 · 2021年2月8日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
【工业智能】电网故障诊断的智能技术
产业智能官
34+阅读 · 2018年5月28日
侦测欺诈交易(异常点检测)
GBASE数据工程部数据团队
19+阅读 · 2017年5月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
33+阅读 · 2021年12月31日
Arxiv
56+阅读 · 2021年5月3日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
27+阅读 · 2020年12月24日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
136+阅读 · 2018年10月8日
微信扫码咨询专知VIP会员