项目名称: 双模耦合光纤激光微腔复合域光学特性及其用于多元参量分布式传感的基础研究

项目编号: No.61275004

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 孙琪真

作者单位: 华中科技大学

项目金额: 80万元

中文摘要: 本项目在青年科学基金研究基础上从结构设计、传感机理和制备工艺等方面创新,针对复合材料固化过程监测需求,研究双模耦合光纤激光微腔复合域光学特性及多元参量分布式传感技术。主要内容:1)光纤谐振微腔复合域光学特性及多元参量敏感机理;2)光纤微腔制备工艺;3)基于双波长模式耦合有源光纤微腔的高精度检测机理;4)基于正交偏振模式耦合有源光纤微腔的多元参量高精度检测机理;5)基于多域复用的分布式传感机理;6)复合材料固化过程中多元参量的分布式传感监测应用。主要创新点:1)光纤微腔结构融合光栅谐振模式和微纳光纤倏逝场分布的敏感特性,结合复合域光学特性分析实现多参量同步传感;2)有源保偏光纤谐振微腔增强模式激射和耦合作用,极大提高检测灵敏度;3)光纤微腔的一次成型制备方法操作简单、可靠性高。研究成果可用于复合材料固化过程中各个部位折射率、温度、压力等多参量的高精度分布式监测应用,提高其固化成型质量。

中文关键词: 微纳光纤;光纤传感;模式干涉;多参量传感;分布式传感

英文摘要: The program investigates optical characteristics of double-modes coupled fiber micro-cavity in hybrid domains and its application in multi-parameters and distributed sensing technology, aiming at the satisfying the requirement of curing process monitoring of composite materials. Based on the research achievements of last program, we propose novel schemes including structure design, sensing principle and fabrication technique. The main research contents are as follows: 1)Optical characteristics of fiber micro-cavity in hybrid domains and its multi-parameters sensing principle;2)Fabrication technique of fiber micro-cavity;3) High precision detection principle based on coupling mechanism between double-wavelength lasing modes generated in active fiber; 4)High precision detection principle of multi-parameters based on coupling mechanism between orthogonal polarization modes;5)Distributed sensing principle based on hybrid multiplexing mechanism;6)Application in curing process monitoring of composite materials.The major innovation includes the following aspects:1)The fiber micro-cavity integrates the sensitive characteristics of resonate modes of grating and evanescent fields of micro/nano fiber,and thus simultaneous multi-parameters sensing could be realized assisted by optical analysis in hybrid domains;2)The micro

英文关键词: micro/nano fiber;fiber sensor;mode interference;multi-parameter sensing;distributed sensing

成为VIP会员查看完整内容
0

相关内容

专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
26+阅读 · 2021年9月4日
专知会员服务
18+阅读 · 2021年5月16日
专知会员服务
25+阅读 · 2020年12月17日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
221+阅读 · 2020年5月6日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
126+阅读 · 2020年9月6日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
26+阅读 · 2018年8月19日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
26+阅读 · 2021年9月4日
专知会员服务
18+阅读 · 2021年5月16日
专知会员服务
25+阅读 · 2020年12月17日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
221+阅读 · 2020年5月6日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员