项目名称: 太阳光-电-芬顿耦合多功能电极制备及降解抗生素废水研究

项目编号: No.51508435

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 其他

项目作者: 王宇晶

作者单位: 西安工业大学

项目金额: 20万元

中文摘要: 电-Fenton氧化是处理难降解有机废水的重要高级氧化技术之一。针对现行方法氧化效率低、pH适用范围窄、Fe2+易失活等问题,本项目拟可控制备兼具高效吸附、分子氧还原及太阳光增效的多功能一体化阴极——反蛋白石结构α-Fe2O3/石墨烯气凝胶(3DOM α-Fe2O3/GA),构建太阳光-电-Fenton异相催化体系并开展对抗生素废水的降解研究。通过分析微观形貌、晶体结构、吸附性能、光电化学特性、催化活性,揭示阴极材料结构和性能之间的构效关系,明确污染物分子与电极微观界面的相互作用及多相界面的电子迁移规律;通过研究污染物去除效率、活性自由基、中间产物变化及降解动力学,阐明太阳光照射对电-Fenton氧化的增强机制,建立太阳光-电-Fenton耦合异相催化理论,该研究将为Fenton技术的发展和应用提供理论依据和技术借鉴。

中文关键词: 电芬顿氧化;太阳光;石墨烯气凝胶;有序大孔材料;抗生素废水

英文摘要: Homogenous electro-Fenton is one of the most important Advanced Oxidation Technology for refractory organic pollutants removal. To solve the problems of low efficiency, narrow working pH range and Fe2+ inactivation, this project intends to prepare an inverse opal α-Fe2O3/graphene aerogel (3DOM α-Fe2O3/GA) with multi-function of efficient adsorption, reduction of molecular oxygen and sunlight activation, which is employed to construct solar photo-electro-Fenton heterogeneous catalysis system for typical antibiotics wastewater treatment. The microscopic morphology, crystal structure, adsorption properties, photoelectrochemical properties, and catalytic activity are deeply studied to reveal the relationship between structure and properties of cathode. The interaction between contaminant molecules with electrode microscopic interface and the law of electron mobility on multi-phase interface are elucidated. Active oxidation radical, intermediates, removal efficiency and degradation kinetics are analyzed, respectively. The enhancement of catalytic oxidation ability derived from sunlight illumination is evaluated. The solar photo-electro-Fenton coupling theory is proposed. The results will provide theoretical basis and technical reference for Fenton development and application.

英文关键词: Electro-Fenton oxidation;Solar light;Graphene aerogel;Ordered macroporous material;Antibiotics wastewater

成为VIP会员查看完整内容
0

相关内容

光声成像
专知会员服务
8+阅读 · 2022年5月23日
《企业物联网平台技术白皮书(2022)》31页PDF,阿里云
专知会员服务
23+阅读 · 2022年3月23日
《5G+智慧农业解决方案》22页PPT,三昇农业
专知会员服务
53+阅读 · 2022年3月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
32+阅读 · 2021年4月6日
可对药物分子进行表征的几何深度学习
机器之心
0+阅读 · 2022年2月6日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年5月25日
Arxiv
0+阅读 · 2022年5月24日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员