项目名称: 高稳定性孔性配位聚合物在能源气体分离的研究

项目编号: No.21301148

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 段金贵

作者单位: 南京工业大学

项目金额: 24万元

中文摘要: 孔性配位聚合物,以其可控的结构,较高的比表面积,特殊的认知能力等特点,受到全球范围化学家、材料学家的广泛关注,也将成为"清洁能源气体存储和低能耗混和能源气体分离"的重要平台,但是材料的水稳定性是目前尚待解决的关键难题。本项目拟基于运用唑类和多酸配体连接子,引入疏水基团和高价金属节点的策略,利用增强配位键能力和遮挡配位键等方法,从而实现控制搭建高水稳定,且兼具高分离性能的孔性配位聚合物材料。同时,系统研究不同疏水基团,配位点位置,孔洞类型和尺寸,气体扩散效率等因素与多孔材料稳定性和分离性能的关系,为制备具有自主创新的孔性材料提供科学依据和技术支持。

中文关键词: 水稳定性;设计;孔性配位聚合物;能源气体分离;

英文摘要: Recently, a new class of designable and robust porous materials, porous coordination polymers (PCPs) or metal organic frameworks (MOFs), have demonstrated significant promise for energy gas adsorption and separation because of their chemical tailorability, which results in high BET surface areas and specific recognition ability for components in the gas mixture. Because of the theoretically limitless possibilities in assembling organic linkers and metal or cluster connectors, a large number of structures have been reported,but a few of them show show outstanding storage and selectivity for small hydrocarbons. This is mainly due to their similar physical and chemical properties, which lead to the difficulty for adsorption-based separation. However, among these few structures, their rather low hydrothermal and chemical stabilities, compared with zeolites, further limit their usage in moist and chemical environments. Therefore, candidate PCPs with high separation capability and enhanced stability in air, water, and acidic and basic media for energy gas separation are urgently needed. To overcome these issues, our strategy is to employ the trivalent ion and rigid azole-carboxylic ligand with hydrophobic group to construct porous frameworks. Because of the high coordination number of metal, zeolite-framework, and als

英文关键词: water stability;design;porous coordination polymer;energy gas separation;

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
制造业数字化转型路线图,67页pdf
专知会员服务
75+阅读 · 2021年10月11日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
39+阅读 · 2021年5月12日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知会员服务
38+阅读 · 2020年8月26日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
事理图谱的构建与应用分论坛|CNCC2021
哈工大SCIR
1+阅读 · 2021年12月14日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Learning to execute or ask clarification questions
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
14+阅读 · 2019年11月26日
小贴士
相关主题
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
制造业数字化转型路线图,67页pdf
专知会员服务
75+阅读 · 2021年10月11日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
39+阅读 · 2021年5月12日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知会员服务
38+阅读 · 2020年8月26日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员