项目名称: 先驱体转化原位制备表面富BN的SiBN纤维的机理与性能研究

项目编号: No.51203182

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 有机高分子材料学科

项目作者: 雷永鹏

作者单位: 中国人民解放军国防科学技术大学

项目金额: 25万元

中文摘要: 高超声速飞行器的发展对耐高温/承载/透波陶瓷纤维的需求日益迫切,本项目拟结合先驱体法和原位转化法的优势,以降低先驱体对环境湿度的要求、提高SiBN纤维的耐高温性能、界面性能和介电性能为目标,基于材料设计,利用聚碳硅烷(PCS)不易水解、可纺性好的特点,以其为本体先驱体,添加较低分子量的聚烷氨基环硼氮烷(PPAB)经空气中熔融纺丝后,控制熟化条件使PPAB从PCS中析出形成径向化学成分梯度,再经不熔化、氨气氮化除碳无机化原位制备表面富BN的SiBN纤维,陶瓷本体和功能表面层同时形成且无明显界面。重点研究熟化工艺对原丝径向化学成分分布的影响机制、BN层厚度控制,SiBN纤维组成结构对力学、界面、耐高温和介电性能的影响规律,进而调控纤维性能,建立SiBN纤维的组成-结构-性能间的关系规律并揭示其机理。本项目对新型陶瓷纤维的研制以至先驱体转化原位制备结构/功能复合材料器件具有重要理论和现实意义。

中文关键词: 陶瓷纤维;静电纺丝;原位制备;光催化;电催化

英文摘要: With development of the aerocraft possessing ultra-high velocity above speed of sound, the demand for fibers with high heat resistance, load bearing and wave transparence is increasingly pressing. The aim of the project is to decrease the requirement of humidity for polymeric precursor's melt spinning and improve the high temperature resistance, interfacial performances and dielectric properties. Based on materials design, the polycarbosilane (PCS) with good stability in air and melt-spinnability, will be taken as main precursor and poly(alkylaminoborazine) with low molecular weight as additive. After melt spinning of the mixed polymeric precursor in air, the polymer fiber is pre-treated to control phase separation of the low molecular weight PPAB from PCS to form compositional gradient (bleed out). Then the gradient fiber will be cured and pyrolyzed in ammonia to be nitrified and carbon impurity in precursor will be removed to form SiBN fiber with BN rich surface. The SiBN fiber and functional surface layers will form without obvious interface at the same time. The mechanism of pre-treated on elemental distribution in the radial direction of polymer fiber, control of BN surface thickness and influence of composition/structure of SiBN fiber on mechanical property, interface property, high temperature resistance

英文关键词: ceramics fibers;electrospinning;in-situ preparation;photocatalysis;electrocatalysis

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
103+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年2月26日
专知会员服务
38+阅读 · 2021年2月8日
专知会员服务
101+阅读 · 2020年11月27日
Chrome vs Firefox 性能之争,到底哪家强?
CSDN
0+阅读 · 2022年1月11日
骁龙 8 Gen1+ 环保设计,realme GT2 Pro 够性价比么?
ZEALER订阅号
0+阅读 · 2022年1月9日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
Arxiv
24+阅读 · 2022年1月3日
Arxiv
13+阅读 · 2021年3月3日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
103+阅读 · 2021年4月7日
专知会员服务
26+阅读 · 2021年2月26日
专知会员服务
38+阅读 · 2021年2月8日
专知会员服务
101+阅读 · 2020年11月27日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员