项目名称: 自组装聚合物/氧化硅-离子液体复合膜在质子交换膜燃料电池中性能研究

项目编号: No.21461027

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 赵莲花

作者单位: 延边大学

项目金额: 50万元

中文摘要: 质子交换膜燃料电池需要提高其工作温度在中温区运行,有利于改善电化学性能和缓解催化剂中毒。离子液体因其沸点高,难挥发以及其较高的质子传导能力,在中温区可代替水作为质子传导介质。但是基于离子液体的聚合物膜存在导电性低、离子液体易渗漏等缺点。在前期工作的基础上,本课题拟采用软化学法将离子液体与硅氧烷偶联,以聚合物为基体的纳米微结构可控性能有机地结合起来,原位制备有序氧化硅-离子液体/高聚物复合的质子交换膜。揭示有序氧化硅结构对复合膜的导电性及其渗漏性能的关联,揭示离子液体结构对复合膜导电性及氧化硅间相互作用力的关联,阐述膜材料质子导电机制;确定合适的官能团化硅氧烷修饰聚合物,在聚合物上接枝自组装中温、非水合导电的有序氧化硅/离子液体复合膜,为该类质子交换膜的制备及其应用提供新的基础理论数据。

中文关键词: 离子液体;氧化硅;聚合物;有机-无机杂化;质子交换膜燃料电池

英文摘要: To improve electrochemical performance and ease catalyst poisoning, the operational temperature of proton exchange membrane fuel cells should be elevated within the middle range. The ionic liquid can be instead of water as a proton conduction medium because of its high boiling point, difficult volatilization and its better proton conduction ability. However, there is shortage,such as,electrical conductivity of ionic liquid polymer membrane is low, ionic liquid is leakage.In this project, on the basis of previous work, using soft chemistry, coupling ionic liquids with siloxane, combine with the controllability of polymer-based nano-structures,the proton exchange membrane originated from the hybrid of silica-ionic liquid/polymer can be modulated in situ. Orderly silica structure on conductivity and mechanical properties of composite membrane, mechanism of membrane proton conductive will be elaborated; ionic liquid structure of composite membrane conductivity connection and interaction between silica will be revealed; Appropriate functional siloxane modified polymer, temperature in the polymer grafted on self-assembly, orderly hydration conductive silica liquid composite membrane will be determined, the new data for the preparation and applications of proton exchange membrane basic theory will be provided.

英文关键词: ionic liquid;silica;polymer;organic/inorganic hybrid;proton exchange membrane fuel cells

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
专知会员服务
21+阅读 · 2021年3月9日
【CVPR2021】细粒度多标签分类
专知会员服务
60+阅读 · 2021年3月8日
专知会员服务
28+阅读 · 2020年8月8日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【ACL2020】利用模拟退火实现无监督复述
专知会员服务
13+阅读 · 2020年5月26日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Learning to execute or ask clarification questions
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
15+阅读 · 2020年2月6日
小贴士
相关VIP内容
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
【CVPR2021】神经网络中的知识演化
专知会员服务
24+阅读 · 2021年3月11日
专知会员服务
21+阅读 · 2021年3月9日
【CVPR2021】细粒度多标签分类
专知会员服务
60+阅读 · 2021年3月8日
专知会员服务
28+阅读 · 2020年8月8日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【ACL2020】利用模拟退火实现无监督复述
专知会员服务
13+阅读 · 2020年5月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员