项目名称: 业务能力可预见的分布式认知无线网络在线决策机制研究

项目编号: No.61272487

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 杨盘隆

作者单位: 中国人民解放军理工大学

项目金额: 82万元

中文摘要: 本课题以认知无线网络分布式在线学习与决策为研究背景,针对目前理论研究以及系统实用化进程中所面临的三个挑战:"时空覆盖失度"、"动态调度失衡"和"机会调度失序",有效解决目前信道特征学习困难、动态适应性差、网络调度与协同开销巨大的问题。课题研究过程中,首先探索在线认知学习方法,利用在线认知的反馈信息实现"利用中学习"和"学习中利用",根据残缺的、局部的、非确定性的,甚至是存在错误的认知信息,结合随机决策优化模型和非确定信息处理的方法,解决信道学习和利用的矛盾;接着通过准确有效的控制节点的行为,包括最优接入门限和网络状态分析,实现多用户在多维信息条件下的连续动态接入;最后,提出"可预见业务能力"的概念,优化网络的负载能力,追求在可靠性与稳定性之间达到平衡,减小节点之间的协议开销。在此基础上,能够增强系统的动态敏感性与抗扰动能力,有效提高信息的传播效率,从而有效解决机会调度困难,效率低下的问题。

中文关键词: 认知无线电;MIMO通信;干扰管理;决策方法;群智感知

英文摘要: In this proposal, we study the online learning and decision making problem in distributed wireless cognitive radio network. In tackling the three challenges : "spatia temporal covery failure", "dynamic scheduling efficiency" and "opportunistic scheduling disordering", the proposal aims at solving these problems and build an effcient and adaptive online learning and decision making pradigm. First, we propose the "using channels while learing" and "learning channels while using" methods, which could effectively utilize the imperfect channel knowledge. Secondly, using the opitmal access thereshold and network status analysis method, we can moderately control the cogntive node, where the continuous and dynamic accessing can be achieved in multi-dimesional information scenarios. Finaly, we propose the "predictable service" concept in achieve an optimized network workload and scheduling paradigm, which aims at achieving a perfect balance between reliablity and stability, minimizing the protocol overhead between nodes. Leveraging these methods, the system sensibility and stablity can be achieved at the same time, and the coordinative information overhead can be minimized, which will be helpful to solve the inefficient scheduling problem in opportunistic spectrum accessing network.

英文关键词: cognitive radio;MIMO;interference management;decision making;Crowdsensing

成为VIP会员查看完整内容
0

相关内容

《华为云金融行业 保险全业务上云解决方案》18页PPT
专知会员服务
15+阅读 · 2022年3月23日
6G中联邦学习的应用、挑战和机遇
专知会员服务
51+阅读 · 2022年3月14日
专知会员服务
36+阅读 · 2021年7月8日
专知会员服务
24+阅读 · 2021年6月9日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
专知会员服务
64+阅读 · 2021年5月3日
GCN如何并行化?分布式图卷积神经网路,13页pdf
专知会员服务
34+阅读 · 2020年7月20日
产品异常场景设计:5招搞定弱网和离线场景的产品设计
人人都是产品经理
0+阅读 · 2022年4月5日
别再拍脑袋了!做B端产品决策前,你判断需求价值了吗?
人人都是产品经理
0+阅读 · 2021年12月13日
关系图谱在贝壳的构建和应用
DataFunTalk
29+阅读 · 2020年3月4日
从信息论的角度来理解损失函数
深度学习每日摘要
17+阅读 · 2019年4月7日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
网络安全态势感知
计算机与网络安全
26+阅读 · 2018年10月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关VIP内容
《华为云金融行业 保险全业务上云解决方案》18页PPT
专知会员服务
15+阅读 · 2022年3月23日
6G中联邦学习的应用、挑战和机遇
专知会员服务
51+阅读 · 2022年3月14日
专知会员服务
36+阅读 · 2021年7月8日
专知会员服务
24+阅读 · 2021年6月9日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
专知会员服务
64+阅读 · 2021年5月3日
GCN如何并行化?分布式图卷积神经网路,13页pdf
专知会员服务
34+阅读 · 2020年7月20日
相关资讯
产品异常场景设计:5招搞定弱网和离线场景的产品设计
人人都是产品经理
0+阅读 · 2022年4月5日
别再拍脑袋了!做B端产品决策前,你判断需求价值了吗?
人人都是产品经理
0+阅读 · 2021年12月13日
关系图谱在贝壳的构建和应用
DataFunTalk
29+阅读 · 2020年3月4日
从信息论的角度来理解损失函数
深度学习每日摘要
17+阅读 · 2019年4月7日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
网络安全态势感知
计算机与网络安全
26+阅读 · 2018年10月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员